Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruit flies1–5. However, whether inhibition of mTOR signalling can extend life in a mammalian species was unknown. We report here that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. Based on age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. These are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.
Here we report that genistein, a soybean isoflavone, strongly inhibits tumor promoter-induced H2O2 formation both in vivo and in vitro. Genistein suppressed H2O2 production by 12-O-tetradecanoylphorbol-13-acetate- (TPA) stimulated human polymorphonuclear leukocytes (PMNs) and HL-60 cells in a dose-dependent manner over the concentration range 1-150 microM. Human PMNs were more sensitive to the inhibitory effect of genistein than HL-60 cells (50% inhibitory concentration 14.8 and 30.2 microM, respectively). In addition, genistein moderately inhibited superoxide anion formation by HL-60 cells and scavenged exogenously added H2O2 under the same conditions as in cell culture. However, the H2O2-scavenging effect of genistein was about 50% lower than its inhibition of cell-derived H2O2 formation at all concentrations. In the CD-1 mouse skin model, genistein strongly inhibited TPA-induced oxidant formation, edema, and PMN infiltration in mouse skin. Inhibition of TPA-mediated H2O2 in vivo may result from decreased cell-derived H2O2 formation, scavenging of H2O2 produced, and/or suppression of PMN infiltration into the dermis. The antioxidant properties of genistein may be responsible for its anticarcinogenic effects, and the dietary availability of genistein makes it a promising candidate for the prevention of human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.