Antioxidant and antipromotional effects of the soybean isoflavone genistein have been studied in HL-60 cells and the mouse skin tumorigenesis model. Effects of structure-related flavone/isoflavones on hydrogen peroxide (H2O2) production by 12-O-tetradecanoylphorbol-13-acetate (TPA)-activated HL-60 cells and superoxide anion (O2-) generation by xanthine/xanthine oxidase were compared. Of tested isoflavones, genistein is the most potent inhibitor among TPA-induced H2O2 formation by (dimethyl sulfoxide) DMSO-differentiated HL-60 cells, daidzein is second, and apigenin and biochanin A show little effect. In contrast, genistein, apigenin, and prunectin are equally potent in inhibiting O2- generation by xanthine/xanthine oxidase, with daidzein showing a moderate inhibitory effect and biochanin A exhibiting no effect. These results suggest that the antioxidant properties of isoflavones are structurally related and the hydroxy group at Position 4' is crucial in both systems. Dietary administration of 250 ppm genistein for 30 days significantly enhances the activities of antioxidant enzymes in the skin and small intestine of mice. Further studies show that genistein significantly inhibits TPA-induced proto-oncogene expression (c-fos) in mouse skin in a dose-dependent manner. In a two-stage skin carcinogenesis study, low levels of genistein (1 and 5 mumol) significantly prolong tumor latency and decrease tumor multiplicity by approximately 50%. We conclude that genistein's antioxidant properties and antiproliferative effects may be responsible for its anticarcinogenic effect. Its high content in soybeans and relatively high bioavailability favor genistein as a promising candidate for the prevention of human cancers.
Here we report that genistein, a soybean isoflavone, strongly inhibits tumor promoter-induced H2O2 formation both in vivo and in vitro. Genistein suppressed H2O2 production by 12-O-tetradecanoylphorbol-13-acetate- (TPA) stimulated human polymorphonuclear leukocytes (PMNs) and HL-60 cells in a dose-dependent manner over the concentration range 1-150 microM. Human PMNs were more sensitive to the inhibitory effect of genistein than HL-60 cells (50% inhibitory concentration 14.8 and 30.2 microM, respectively). In addition, genistein moderately inhibited superoxide anion formation by HL-60 cells and scavenged exogenously added H2O2 under the same conditions as in cell culture. However, the H2O2-scavenging effect of genistein was about 50% lower than its inhibition of cell-derived H2O2 formation at all concentrations. In the CD-1 mouse skin model, genistein strongly inhibited TPA-induced oxidant formation, edema, and PMN infiltration in mouse skin. Inhibition of TPA-mediated H2O2 in vivo may result from decreased cell-derived H2O2 formation, scavenging of H2O2 produced, and/or suppression of PMN infiltration into the dermis. The antioxidant properties of genistein may be responsible for its anticarcinogenic effects, and the dietary availability of genistein makes it a promising candidate for the prevention of human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.