Pigeons are widespread bird species in urban regions (Columba livia forma urbana) and may carry pathogens with zoonotic potential. In recent years, more and more data indicate that these zoonotic pathogens are multidrug resistant. Our results confirmed that global trend. Three different multidrug-resistant pathogens were isolated from an oral cavity of a racing pigeon with lesions typical for pigeon pox virus infection. Staphylococcus aureus was recognized as methicillin resistant, thus resistant to all beta-lactams. Additionally, it was also resistant to many other classes of antibiotics, namely: aminoglycosides, tetracyclines, phenicols, lincosamides, and macrolides. Escherichia coli showed resistance to all antimicrobials tested, and it was classified as intermediate to amikacin. Moreover, Candida albicans resistant to clotrimazole, natamycin, flucytosine, and amphotericin and intermediate to ketoconazole, nystatin, and econazole was also isolated. This raises the question how pigeons acquire such highly resistant strains. Therefore, more data are needed concerning the resistance to antibiotics in strains from domestic and wild pigeons in Poland. Until the problem is fully understood, it will be challenging to implement adequate planning of any control measures and check their effectiveness.
Introduction Mycobacteriosis is a significant disease of companion and wild birds which causes emaciation and widely distributed lesions, as well as being a potential zoonosis. Its primary aetiological agents in birds are Mycobacterium avium subsp. avium and the fastidious Mycobacterium genavense. This study monitored the therapy of birds naturally infected with Mycobacterium genavense to gain understanding of its effectiveness and the interrelation of co-infections with the disease course and pharmacotherapy. Material and Methods Five Atlantic canaries (Serinus canaria) and one Bengalese finch (Lonchura striata) with tentative diagnoses of mycobacteriosis resulting from M. genavense infection were treated twice daily with clarithromycin at 40 mg/kg, ethambutol at 30 mg/kg, and moxifloxacin at 10 mg/kg for 6 months. Two canaries were also found to be carriers of Cryptosporidium galli. Mycobacteria in faecal samples of all birds were investigated by bacterioscopy and quantitative PCR. Results Molecular tests yielded positive results for up to four months after treatment initiation for M. genavense and Cryptosporidium, but microscopy failed to detect the latter after four weeks in specimens from one canary. Co-infections with polyomavirus (in all birds) and circovirus and bornavirus (in canaries) were diagnosed. Two birds died during treatment and one was euthanised because of other disease, 1 month after treatment completion. Three canaries were in relatively good health a year after treatment. Conclusion Canary circovirus and polyomavirus co-infection may suppress the immune system and this may facilitate the development of mycobacteriosis. The set of drugs used led to the complete cure of mycobacteriosis in three canaries. In one bird the disease returned. Clarithromycin was the active drug against C. galli. Molecular methods serve well to monitor mycobacteriosis therapy and identify M. genavense and C. galli carriage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.