Objective-Intimal hyperplasia is considered to be a healing response and is a major cause of vessel narrowing after injury, where migration of vascular progenitor cells contributes to pathological events, including transplant arteriosclerosis. Approach and Results-In this study, we used a rat aortic-allograft model to identify the predominant cell types associated with transplant arteriosclerosis and to identify factors important in their recruitment into the graft. Transplantation of labeled adventitial tissues allowed us to identify the adventitia as a major source of cells migrating to the intima. RNA microarrays revealed a potential role for monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor 1, regulated on activation, normal T cell expressed and secreted, and interferon-inducible protein 10 in the induced vasculopathy. MCP-1 induced migration of adventitial fibroblast cells. CCR2, the receptor for MCP-1, was coexpressed with CD90, CD44, NG2, or sca-1 on mesenchymal stem cells. In vivo experiments using MCP-1-deficient and CCR2-deficient mice confirmed an important role of MCP-1 in the formation of intimal hyperplasia in a mouse model of vascular injury. The aim of this study was to examine the contribution of MSCs in intimal hyperplasia and to identify relevant factors that affect their recruitment. We found that local inflammation in transplanted vessels exerts an effect on surrounding tissue and vessels that leads to phenotypic modulation of SMCs; however, those cells did not migrate to the intima and did not contribute to the intimal hyperplasia. Rather, as shown by transplantation of labeled cells, adventitial progenitor cells seemed to be a prominent source of host-derived cells in the lesion, and MCP-1 exhibits an important role in their recruitment and the pathological process of intimal hyperplasia. Conclusions-The Materials and MethodsMaterials and Methods are available in the online-only Supplement. Results Transplantation of Allografts Leads to Structural Changes in Adjacent TissuesRejection of transplanted organs is associated with inflammation, and the production of factors that may activate cells in surrounding tissues. To determine how allografts influence the adjacent vessel tissues, we transplanted a fragment of rat isogenic (from F344 rats) or allogenic (from LEW rats) aortic graft into the abdominal aorta of F344 rats. Samples of aortic allografts and adjacent vessel segments were collected at 1, 2, 4, 8, and 12 weeks and analyzed separately; isograft samples were collected at 8 weeks.In 2-week-old allografts, immunohistochemical staining for α-smooth muscle actin was decreasing in the media, and α-smooth muscle actin positive cells had migrated to the neointima. Similar, but less prominent, changes were observed in adjacent vessels ( Figure 1A). At 1 to 2 weeks after transplantation, electron microscopy revealed distinct structural alterations in SMCs in the inner layer of the media and progressive de-endothelization of the allograft. Most of the SMCs were contracti...
The BRCA1 protein, one of the major players responsible for DNA damage response has recently been linked to Alzheimer's disease (AD). Using primary fibroblasts and neurons reprogrammed from induced pluripotent stem cells (iPSC) derived from familial AD (FAD) patients, we studied the role of the BRCA1 protein underlying molecular neurodegeneration. By whole-transcriptome approach, we have found wide range of disturbances in cell cycle and DNA damage response in FAD fibroblasts. This was manifested by significantly increased content of BRCA1 phosphorylated on Ser1524 and abnormal ubiquitination and subcellular distribution of presenilin 1 (PS1). Accordingly, the iPSC-derived FAD neurons showed increased content of BRCA1(Ser1524) colocalized with degraded PS1, accompanied by an enhanced immunostaining pattern of amyloid-β. Finally, overactivation of BRCA1 was followed by an increased content of Cdc25C phosphorylated on Ser216, likely triggering cell cycle re-entry in FAD neurons. This study suggests that overactivated BRCA1 could both influence PS1 turnover leading to amyloid-β pathology and promote cell cycle re-entry-driven cell death of postmitotic neurons in AD.
This study indicates that circulating progenitors of bone marrow origin give rise to cells with smooth muscle-like properties during formation of neointimal thickenings in the arterial wall after allotransplantation and after balloon injury. A segment of abdominal aorta was transplanted from female F344 to male LEW rats, and the grafts were analyzed for male cells by using the gene as a marker. Immunostaining demonstrated that CD45-positive leukocytes made up 35-45% of the neointimal cells during the 8-week period examined. Concurrently, up to 70% of the neointimal cells were of host origin, as shown by real-time polymerase chain reaction for the gene (Y chromosome). This suggests that the neointima contained host cells also of noninflammatory character. Accordingly, many cells positive for smooth-muscle alpha-actin were detected in this layer. To explore the possible bone marrow origin of allograft cells, female LEW rats were irradiated and substituted with bone marrow from male LEW rats. Subsequently, the animals received an aortic transplant from female F344 rats or were exposed to a balloon injury of the carotid artery. Immunostaining and real-time polymerase chain reaction confirmed the above findings, but the fractions of leukocytes and -positive cells were lower in the carotids than in the allografts. Combined primed in situ labeling and immunostaining verified that not only inflammatory but also smooth muscle-like cells of male origin appeared in the vessel wall in both situations. These observations suggest that the smooth-muscle cells that participate in the development of neointimal lesions during vascular disease may, in part, originate from circulating progenitors.
In hemodialysis patients, a native arteriovenous fistula (AVF) is the preferred form of permanent vascular access. Despite recent improvements, vascular access dysfunction remains an important cause of morbidity in these patients. In this prospective observational cohort study, we evaluated potential risk factors for native AVF dysfunction. We included 68 patients with chronic renal disease stage 5 eligible for AVF construction at the Department of General and Vascular Surgery, Central Clinical Hospital Ministry of Internal Affairs, Warsaw, Poland. Patient characteristics and biochemical parameters associated with increased risk for AVF failure were identified using Cox proportional hazards models. Vessel biopsies were analyzed for inflammatory cells and potential associations with biochemical parameters. In multivariable analysis, independent predictors of AVF dysfunction were the number of white blood cells (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.24 to 2.25; p<0.001), monocyte number (HR 0.02; 95% CI 0.00 to 0.21; p = 0.001), and red blood cell distribution width (RDW) (HR 1.44; 95% CI 1.17 to 1.78; p<0.001). RDW was the only significant factor in receiver operating characteristic curve analysis (area under the curve 0.644; CI 0.51 to 0.76; p = 0.046). RDW>16.2% was associated with a significantly reduced AVF patency frequency 24 months after surgery. Immunohistochemical analysis revealed CD45-positive cells in the artery/vein of 39% of patients and CD68-positive cells in 37%. Patients with CD68-positive cells in the vessels had significantly higher white blood cell count. We conclude that RDW, a readily available laboratory value, is a novel prognostic marker for AVF failure. Further studies are warranted to establish the mechanistic link between high RDW and AVF failure.
Development of intimal thickenings during transplant vasculopathy involves an allogenic immune response, which promotes accumulation of host-derived SMCs and apoptosis of resident graft SMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.