The aim of this paper is to discuss a connection between the geometric configuration and positioning accuracy in wireless networks exploiting the TDOA technique. At the beginning, a simulation model of TDOA localization technique is described. We use the Taylor series expansion and least square fit method to estimate the terminal's position. In this part we also derive a statistical model for calculating the geometric dilution of precision (GDOP), which is here a variable reflecting geometric quality with respect to the hyperbolic lateration. The two dimensional root mean square (RMS) error metric is also presented in order to make necessary accuracy calculations. We then describe an impact of the bad configuration of measurement units on the positioning accuracy. Basing on simulation results, the TDOA efficiency for different time errors and geometric circumstances is presented. Finally, we show an empirical solution for decreasing the bad geometry effect. The accuracy is improved thanks to the additional measurement units placed in the good geometry conditions.
In the paper, the measurement and simulation results of the VDES (VHF Data Exchange System) terrestrial component are discussed. It is anticipated that VDES will be one of the major solutions for maritime communications in the VHF band and its performance will be sufficient to fulfill the requirements of the e-navigation applications. The process of the VDES standardization (ITU R, IALA) has not been officially completed yet, but substantial amount of technical information about the future system’s terrestrial component (VDE-TER) is already available. The paper is divided into three general parts: (a) theoretical presentation of the system’s physical layer and the radio channels applicable to VDES, (b) simulation results (BER, BLER, channel delay between two propagation paths and its influence on bit rates) and (c) measurement results (useful ranges, BER). It turned out that in real maritime conditions, the VDES system can offer ranges between 25 and 38 km for the configurations assumed during the measurement campaign. Those results are generally compliant with the theoretical data in the line-of-sight conditions. In the NLOS scenarios, where fading becomes the dominant phenomenon, the discrepancies between the measurements and the theoretical results were more significant. The obtained results confirmed that VDES provides a large coding gain, which significantly improves the performance of data transmission and increases the bit rate compared to the existing maritime radiocommunication solutions. It should be noted that the results presented in the article were used by the IALA while developing the current version of the VDES specification.
This article discusses the increasing security risk for the Global Navigation Satellite System (GNSS) due to both unintentional and deliberate interference (attacks), which have gotten significantly worse in 2022 due to tense the international situation. The upcoming Galileo Public Regulated Service (PRS), which is more resilient and robust than initial GNSS open services, is one of the key solutions for that problem. The technical description of this service, aspects regarding its implementation in the EU and the role of designated governmental authorities in that process are extensively covered in the first sections of the article. The next relevant issue brought up in the paper is the PRS signals’ coexistence with amateur services operating within the same frequency resources, which have recently became a source of significant controversy in Europe. Finally, the article presents the Polish contribution to the Galileo PRS preparatory actions, covering the participation in two international R&D projects, the developed measurement station and initial results for the GNSS receiver’s jamming and spoofing resistance tests, as well as the concept of the Galileo PRS threats detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.