In the paper, the measurement and simulation results of the VDES (VHF Data Exchange System) terrestrial component are discussed. It is anticipated that VDES will be one of the major solutions for maritime communications in the VHF band and its performance will be sufficient to fulfill the requirements of the e-navigation applications. The process of the VDES standardization (ITU R, IALA) has not been officially completed yet, but substantial amount of technical information about the future system’s terrestrial component (VDE-TER) is already available. The paper is divided into three general parts: (a) theoretical presentation of the system’s physical layer and the radio channels applicable to VDES, (b) simulation results (BER, BLER, channel delay between two propagation paths and its influence on bit rates) and (c) measurement results (useful ranges, BER). It turned out that in real maritime conditions, the VDES system can offer ranges between 25 and 38 km for the configurations assumed during the measurement campaign. Those results are generally compliant with the theoretical data in the line-of-sight conditions. In the NLOS scenarios, where fading becomes the dominant phenomenon, the discrepancies between the measurements and the theoretical results were more significant. The obtained results confirmed that VDES provides a large coding gain, which significantly improves the performance of data transmission and increases the bit rate compared to the existing maritime radiocommunication solutions. It should be noted that the results presented in the article were used by the IALA while developing the current version of the VDES specification.
The article presents an analysis of the features of selected correlators impacting the accuracy of determining the receiver’s range and position in VHF marine environment. The paper introduces the concept of various correlators – including the double delta correlator – and describes the proposed measurement scenarios that have been designed to demonstrate the effectiveness of those components. The entire work was performed as part of the R-Mode Baltic and R-Mode Baltic 2 projects, with our goals including analyzing the impact of multipath phenomena, changes in the sampling frequency or Signac type on the determination of the received signal delay at the receiver. The measured data were processed in a signal correlation application and in a TOA-based tool in order to determine the receiver’s position. This process made it possible to compare the selected correlating devices. The results presented in this article are to be used by IALA in developing a current version of the VHF data exchange system’s (VDES) specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.