Optimization of energy consumption and related energy efficiency can be realized in various ways, both through measures to reduce heat losses through building partitions and the introduction of modern systems of regulation and management of heat distribution. In order to achieve the best possible results, these actions should be interlinked, especially in older buildings that have undergone thermomodernization. Therefore, the aim of the study was to evaluate actions aimed at improving energy efficiency of buildings made in prefabricated technology. These buildings were thermomodernized and then the weather-controlled central heating system was installed. The study assessed whether the application of the change of the method of central heating regulation from the traditional one, taking into account only the change of external temperature to the weather-controlled one, will contribute to the increase of energy efficiency of buildings. The research was carried out in the existing residential buildings, for which data on the actual energy consumption was collected and elaborated and includes periods before modernization, after thermomodernization and the period after the introduction of the central heating system with weather control. The collected data cover an eighteen-year period of buildings’ use. The obtained results indicate that in Polish conditions the introduction of weather-controlled regulation system in buildings made in prefabricated technology (made of large slab) allows to achieve energy savings in the range of 16–23%, it may be related to their high thermal capacity resulting from the use of concrete elements in the building envelope.
The paper presents an assessment of thermal energy consumption for heating in 10 buildings made in the OWT-67N prefabricated large-panel technology from 1983 to 1986. The work covers the years 2002–2020 in three periods: before and after thermal modernization and after the use of an innovative weather prediction heating system control in buildings. The analysis made it possible to assess the impact of carrying out a deep thermal modernization, and then installing a modern forecast regulation system in terms of reducing heat energy consumption for central heating purposes, as well as reducing greenhouse gas emissions, such as CO2, SOx, NOx, CO and benzo(a)pyrene, into the atmosphere. The implementation of deep thermal modernization in buildings allowed for savings of 19.8–35% of thermal energy consumption for heating. The use of additional regulation based on prediction saved from 4.8 to 23.5%, except for one building BU10, where there was an increase in final energy consumption by 2.1%. Replacing the weather regulation in heating stations with the forecast regulation additionally reduced the emission of pollutants by 11.1%, compared to the reduction of pollutants achieved as a result of the thermal modernization of buildings alone, amounting to an average of 29.7%.
In this study, based on 19 years of research, an analysis of thermal energy consumption for heating was carried out on a group of 22 residential multi-family buildings located in a temperate continental climate. The buildings were constructed with two different technologies based on prefabricated elements, and most of them were equipped with central heating cost allocators. A predictive control system for the central heating system was installed in the analyzed buildings, followed by a deep thermo-modernization. An evaluation was made regarding whether the use of a change in the method of central heating control, from the traditional one, which takes into account only the variable external temperature, to weather control, increases the energy efficiency of the thermo-modernized buildings. In addition, the cost-effectiveness of the modernization measures was analyzed by determining economic efficiency indicators; therefore, it was possible to identify the modernization variant that, with limited investment costs, could achieve the best energy efficiency resulting from the European energy policy.
Renovation of multi-family residentials, including mainly thermal renovation, which includes adding thermal insulation, contributes to the improvement of living conditions. Above all, it reduces the operating costs of renovated buildings by reducing the consumption of heat energy for central heating.
This article discusses the impact of light wet thermal renovation on the temperature distribution in the vertical cross-section of the partition wall and the calculation value of the temperature on the inner surface of the partition wall, as well as on the reduction of thermal energy consumption in buildings. The subject of the research was residentials erected in the large-panel, large-block, and traditional technology between 1984 and 1994, managed by Łomża Housing Cooperative (ŁSM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.