Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.
This study analyzes the possibility of applying the acoustic emission method (AE) and the Kolmogorov-Sinai (K-S) metric entropy phenomenon in determining the structural changes that take place within the EN AW 7020 aluminum alloy. The experimental part comprised of a static tensile test carried out on aluminum alloy samples, and the simultaneous recording of the acoustic signal generated inside the material. This signal was further processed and diagrams of the effective electrical signal value (RMS) as a function of time were drawn up. The diagrams obtained were applied on tensile curves. A record of measurements carried out was used to analyze the properties of the material, applying a method based on Kolmogorov-Sinai (K-S) metric entropy. For this purpose, a diagram of metric entropy as a function of time was developed for each sample and applied on the corresponding course of stretching. The results of studies applying the AE and the K-S metric entropy method show that K-S metric entropy can be used as a method to determine the yield point of the material where there are no pronounced yield points.
Stress corrosion tests have been performed by using slow-strain-rate testing method (SSRT) in compliance with PN-EN ISO 7539-7 standard. The tests were conducted in air and 3.5% NaCl water solution. The following parameters have been measured during the tests: time to failure -T [h], maximum failure load -F [N], fracture energy (area under stress-elongation curve) -E [MJ/m 3 ], relative elongation of specimen -A 10 [%], maximum tensile stress -R [MPa], as well as percentage reduction of area -Z [%]. On the basis of the obtained test results it was concluded that the joints welded by means of FSW methodshow good resistance to stress corrosion at satsifactory strength properties, which indicates that application of friction welding by using FSW method in shipbuilding industry is purposeful.
Composite materials are used in many industries. They are construction materials that are being used more and more often, which makes it necessary to accurately identify the process of their destruction. Recent decades have resulted in an intensive increase in diagnostic tests of structures and mechanical elements. Non-destructive testing (NDT) represents a group of test methods (surface and volumetric) that provide information about the properties of the tested element without changing its structure. The method of acoustic emission (AE) is also being used more frequently. Thanks to the ability to detect and locate signal sources, as well as to perform tests during operation, it is a method that is increasingly used in industry. In this article, the acoustic emission was used to analyze the changes occurring in composite materials. Obtained parameters helped to determine the signals originating from fibre delamination, fibre cracking, etc., as well as the starting point of these changes and the stress values at which these changes occurred. The analysis of acoustic emission signals recorded during the tests helped to determine the values of amplitudes characteristic for the destruction mechanisms of considered composite materials. Signals with an amplitude in the range of 30–41 dB may indicate elastic–plastic deformation of the matrix. Signals with an amplitude in the range of 42–50 dB indicate matrix cracks with the accompanying phenomenon of fibre delamination. Signals with amplitudes greater than 50 dB indicate fibre breakage. Based on the test results, the permissible stress was determined; when exceeded, the mechanisms of damage to the structure of composite materials accumulate. This stress limit for the tested material is 70 MPa. The use of the acoustic emission method in mechanical tests may contribute to a greater knowledge of composite materials used as a construction material, as well as determine the stresses allowable for a given structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.