Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.
In this paper the results of mechanical studies of the Aropol 536 composite on the epoxy-resin base are described. The aim of the studies was to measure elastic-plastic changes in the composite during its deformation. The obtained results were analyzed using Kolmogorov-Sinai metric entropy. The entropy was computed applying phase portraits reconstructed from a phase plane using delayed coordinates. Resolution of the particular experimental setup limits the number of the acquired data points, i.e., from several to tens of thousands of points and it has significant influence on accuracy of the obtained results. In conclusion, in the tested composites elastic-plastic deformations are periodic and repeat in a distinctive way in a wide range of deformations of the sample. Deformation of the elastic-plastic composite are associated with its complex structure and studies of its mechanical properties require more advanced methods such as use of Kolmogorov-Sinai metric entropy.
The article presents a method of determining the yield point, applying calculations based on the Kolmogorov-Sinai (K-S) metric entropy model. Data used in metric entropy calculations was obtained during a static tensile test of the AW-7020 aluminium alloy. The methodology of K-S entropy calculations was presented and illustrated by a selected example from a data collection. Analyzing the results obtained, the values of an arbitrary yield point were compared for R02 selected samples with the values ReK−S.
This study analyzes the possibility of applying the acoustic emission method (AE) and the Kolmogorov-Sinai (K-S) metric entropy phenomenon in determining the structural changes that take place within the EN AW 7020 aluminum alloy. The experimental part comprised of a static tensile test carried out on aluminum alloy samples, and the simultaneous recording of the acoustic signal generated inside the material. This signal was further processed and diagrams of the effective electrical signal value (RMS) as a function of time were drawn up. The diagrams obtained were applied on tensile curves. A record of measurements carried out was used to analyze the properties of the material, applying a method based on Kolmogorov-Sinai (K-S) metric entropy. For this purpose, a diagram of metric entropy as a function of time was developed for each sample and applied on the corresponding course of stretching. The results of studies applying the AE and the K-S metric entropy method show that K-S metric entropy can be used as a method to determine the yield point of the material where there are no pronounced yield points.
The article describes the technologies of recycling polyester–glass waste and the influence of manufacturing technology on the properties of layered composites with polyester–glass recyclate additive. Milled polyester–glass waste was used as the recyclate. Polyester–glass composites with a specific content of recyclate were manufactured by means of manual laminating and vacuum bagging. The influence of the recyclate content and manufacturing method on the mechanical properties of composites was determined with the aid of specimens exposed to static tensile testing. Test results indicated that the composite without recyclate additive manufactured by means of vacuum bagging exhibits higher strength properties than the same composite manufactured by means of manual laminating. Additionally, its plasticity is much higher than that of the composite manufactured by means of manual laminating. The tests indicated that the tensile properties of the composite are, essentially, influenced by the content of recyclate (apart from the manufacturing method). Adding recyclate to the manufactured composite in the amount of 10% and 20% causes a significant decrease in its tensile properties in relation to the composite without the recyclate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.