The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c-Kit (anti-CD117) and anti-mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, P < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Telocytes (TCs) are a newly discovered type of cell with numerous functions. They have been found in a large variety of organs: heart (endo‐, myo‐, epi‐ and pericardium, myocardial sleeves, heart valves); digestive tract and annex glands (oesophagus, stomach, duodenum, jejunum, liver, gallbladder, salivary gland, exocrine pancreas); respiratory system (trachea and lungs); urinary system (kidney, renal pelvis, ureters, bladder, urethra); female reproductive system (uterus, Fallopian tube, placenta, mammary gland); vasculature (blood vessels, thoracic duct); serous membranes (mesentery and pleura); and other organs (skeletal muscle, meninges and choroid plexus, neuromuscular spindles, fascia lata, skin, eye, prostate, bone marrow). Likewise, TCs are widely distributed in vertebrates (fish, reptiles, birds, mammals, including human). This review summarizes particular features of TCs in the female reproductive system, emphasizing their involvement in physiological and pathophysiological processes.
In severe acute pancreatitis (SAP), systemic inflammation leads to endothelial dysfunction and activation of coagulation. Thrombotic disorders in acute pancreatitis (AP) include disseminated intravascular coagulation (DIC). Recently, angiopoietin-2 and soluble fms-like tyrosine kinase 1 (sFlt-1) were proposed as markers of endothelial dysfunction in acute states. Our aim was to assess the frequency of coagulation abnormalities in the early phase of AP and evaluate the relationships between serum angiopoietin-2 and sFlt-1 and severity of coagulopathy. Sixty-nine adult patients with AP were recruited: five with SAP, 15 with moderately severe AP (MSAP) and 49 with mild AP. Six patients were diagnosed with DIC according to International Society on Thrombosis and Haemostasis (ISTH) score. All patients had at least one abnormal result of routine tests of hemostasis (low platelet count, prolonged clotting times, decreased fibrinogen, and increased D-dimer). The severity of coagulopathy correlated with AP severity according to 2012 Atlanta criteria, bedside index of severity in AP and duration of hospital stay. D-dimers correlated independently with C-reactive protein and studied markers of endothelial dysfunction. Angiopoietin-2, D-dimer, and ISTH score were best predictors of SAP, while sFlt-1 was good predictor of MSAP plus SAP. In clinical practice, routine tests of hemostasis may assist prognosis of AP.
This paper reviews the distribution of interstitial cells of Cajal (ICC) (Folia Morphol 2016, 75, 3: 281-286)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.