In this paper we present a study on stable radicals and short-lived species generated in anion-exchange membrane (AEM) fuel cells (AEMFCs) during operation. The in situ measurements are performed with a micro-AEMFC inserted into a resonator of an electron paramagnetic resonance (EPR) spectrometer, which enables separate monitoring of radicals formed on the anode and cathode sides. The creation of radicals is monitored by the EPR spin trapping technique. For the first time, we clearly show the formation and presence of stable radicals in AEMs during and after long-term AEMFC operation. The main detected adducts during the operation of the micro-AEMFC are DMPO-OOH and DMPO-OH on the cathode side, and DMPO-H on the anode side. These results indicate that oxidative degradation involving radical reactions has to be taken into account when stability of AEMFCs is investigated.
Photocatalytic carboxylation of acetylacetone with carbon dioxide has been performed by using ZnS‐based photocatalysts. The formation of two isomeric carboxylic acids, as proven by IR and 13C NMR spectroscopy, was observed. The reaction yield was enhanced after deposition of ruthenium nanoparticles on ZnS. The reaction encompasses ruthenium‐mediated one‐electron reduction of CO2 to CO2.− with electrons from the conduction band of ZnS and one‐hole oxidation of acetylacetone to the relevant radical. Coupling of photogenerated radicals leads to the formation of carboxylic acids. Generation of CO2.− has been confirmed by spin‐trapping EPR measurements. The process described herein may find applications for the solar‐light‐driven green synthesis of Cn+1 carboxylic compounds from Cn substrates by utilising carbon dioxide.
Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO 2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by the factor of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species at the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing "dark" redox reactions at the interface, improving thus the normally very low quantum yields of UV light-activated TiO 2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 °C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO 2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored single-site-modified photocatalysts for various applications. 19calculations that have the surface exposed to vacuum. Furthermore, the oxygen atom of the cluster forms a short bond of 1.79 Å with a fivefold coordinated titanium atom of the surface, closing a TiO 6 octahedra. Figure 10. (a) DOS of the TiO 2 (R)-Cu system, spin-up channel only, aligned to the DOS of the ideal TiO 2 (R) surface. (b) The spin up channel DOS of the final relaxed electron polaron system for the TiO 2 (R)-Cu system. Cu contribution shown. The zero of the x-axis is fitted to the VBM for both plots.The electronic structure of TiO 2 (R)-Cu is shown in Figure 10a. The Cu atom has a significant presence on the CBE. This is primarily due to the Cu d-states. Further, we compare the position of the decorated rutile TiO 2 surface to the bare rutile surface, by comparison and alignment of the electrostatic potential in the vacuum region. 61 When the alignment is taken into action, the Cu-state is margi...
The unique physicochemical properties and biocompatibility of zinc oxide nanocrystals (ZnO NCs) are strongly dependent on the nanocrystal/ligand interface, which is largely determined by synthetic procedures. Stable ZnO NCs coated with a densely packed shell of 2-(2-methoxyethoxy)acetate ligands, which act as miniPEG prototypes, with average core size and hydrodynamic diameter of 4-5 and about 12 nm, respectively, were prepared by an organometallic self-supporting approach, fully characterized, and used as a model system for biological studies. The ZnO NCs from the one-pot, self-supporting organometallic procedure exhibit unique physicochemical properties such as relatively high quantum yield (up to 28 %), ultralong photoluminescence decay (up to 2.1 μs), and EPR silence under standard conditions. The cytotoxicity of the resulting ZnO NCs toward normal (MRC-5) and cancer (A549) human lung cell lines was tested by MTT assay, which demonstrated that these brightly luminescent, quantum-sized ZnO NCs have a low negative impact on mammalian cell lines. These results substantiate that the self-supporting organometallic approach is a highly promising method to obtain high-quality, nontoxic, ligand-coated ZnO NCs with prospective biomedical applications.
The photocatalytic activity of materials synthesized by titanium dioxide impregnation with chromates(VI) was studied in the processes of 4-chlorophenol oxidation and photocurrent generation. The materials show measurable activity when excited with visible light. Electron paramagnetic resonance (EPR) studies revealed the presence of chromium(V) species even without irradiation. Detection of photogenerated reactive oxygen species, together with elucidation of electrochemical properties of the materials, enabled assumption of a very unique mechanism of TiO 2 photosensitization, involving a photoinduced hole injection from the excited photosensitizer species to the valence band. Photoelectrochemical studies revealed that visible light induced both hole injection to the valence band and electron injection to the conduction band, depending on the electrode potential. The former process is responsible for anodic, whereas the latter is responsible for cathodic photocurrent generation. This counterintuitive behavior results from a peculiar arrangement of electronic levels in the studied systems. Although the (photo)stability of studied materials, as well as the efficiency of the photosensitization process are moderate, the system represents a very unique and therefore interesting mode of titania photosensitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.