We investigate combinatorial issues relating to the use of random orbit approximations to the attractor of an iterated function system with the aim of clarifying the role of the stochastic process during generation the orbit. A Baire category counterpart of almost sure convergence is presented; and a link between topological and probabilistic methods is observed.
We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.
We explore the chaos game for the continuous IFSs on topological spaces. We prove that the existence of attractor allows us to use the chaos game for visualization of attractor. The essential role of basin of attraction is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.