The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.
Sewage sludge is an abundant source of microorganisms that are metabolically active against numerous contaminants, and thus possibly useful in environmental biotechnologies. However, amongst the sewage sludge isolates, pathogenic bacteria can potentially be found, and such isolates should therefore be carefully tested before their application. A novel bacterial strain, Ochrobactrum sp. POC9, was isolated from a sewage sludge sample collected from a wastewater treatment plant. The strain exhibited lipolytic, proteolytic, cellulolytic, and amylolytic activities, which supports its application in biodegradation of complex organic compounds. We demonstrated that bioaugmentation with this strain substantially improved the overall biogas production and methane content during anaerobic digestion of sewage sludge. The POC9 genome content analysis provided a deeper insight into the biotechnological potential of this bacterium and revealed that it is a metalotolerant and a biofilm-producing strain capable of utilizing various toxic compounds. The strain is resistant to rifampicin, chloramphenicol and β-lactams. The corresponding antibiotic resistance genes (including blaOCH and cmlA/floR) were identified in the POC9 genome. Nevertheless, as only few genes in the POC9 genome might be linked to pathogenicity, and none of those genes is a critical virulence factor found in severe pathogens, the strain appears safe for application in environmental biotechnologies.
A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage.
The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.