Only very recently, has it been proposed that the hitherto existing Mycobacterium kansasii subtypes (I-VI) should be elevated, each, to a species rank. Consequently, the former M. kansasii subtypes have been denominated as Mycobacterium kansasii (former type I), Mycobacterium persicum (II), Mycobacterium pseudokansasii (III), Mycobacterium innocens (V), and Mycobacterium attenuatum (VI). The present work extends the recently published findings by using a three-pronged computational strategy, based on the alignment fraction-average nucleotide identity, genome-to-genome distance, and core-genome phylogeny, yet essentially independent and much larger sample, and thus delivers a more refined and complete picture of the M. kansasii complex. Furthermore, five canonical taxonomic markers were used, i.e., 16S rRNA, hsp65, rpoB, and tuf genes, as well as the 16S-23S rRNA intergenic spacer region (ITS). The three major methods produced highly concordant results, corroborating the view that each M. kansasii subtype does represent a distinct species. This work not only consolidates the position of five of the currently erected species, but also provides a description of the sixth one, i.e., Mycobacterium ostraviense sp. nov. to replace the former subtype IV. By showing a close genetic relatedness, a monophyletic origin, and overlapping phenotypes, our findings support the recognition of the M. kansasii complex (MKC), accommodating all M. kansasii-derived species and Mycobacterium gastri. None of the most commonly used taxonomic markers was shown to accurately distinguish all the MKC species. Likewise, no species-specific phenotypic characteristics were found allowing for species differentiation within the complex, except the non-photochromogenicity of M. gastri. To distinguish, most reliably, between the MKC species, and between M. kansasii and M. persicum in particular, whole-genome-based approaches should be applied. In the absence of clear differences in the distribution of the virulence-associated region of difference 1 genes among the M. kansasii-derived species, the pathogenic potential of each of these species can only be speculatively assessed based on their prevalence among the clinically relevant population. Large-scale molecular epidemiological studies Jagielski et al. Genomic Insights Into Mycobacterium kansasii Complex are needed to provide a better understanding of the clinical significance and pathobiology of the MKC species. The results of the in vitro drug susceptibility profiling emphasize the priority of rifampicin administration in the treatment of MKC-induced infections, while undermining the use of ethambutol, due to a high resistance to this drug.
Cultural heritage objects constitute a very diverse environment, inhabited by various bacteria and fungi. The impact of these microorganisms on the degradation of artworks is undeniable, but at the same time, some of them may be applied for the efficient biotreatment of cultural heritage assets. Interventions with microorganisms have been proven to be useful in restoration of artworks, when classical chemical and mechanical methods fail or produce poor or short-term effects. The path to understanding the impact of microbes on historical objects relies mostly on multidisciplinary approaches, combining novel meta-omic technologies with classical cultivation experiments, and physico-chemical characterization of artworks. In particular, the development of metabolomic- and metatranscriptomic-based analyses associated with metagenomic studies may significantly increase our understanding of the microbial processes occurring on different materials and under various environmental conditions. Moreover, the progress in environmental microbiology and biotechnology may enable more effective application of microorganisms in the biotreatment of historical objects, creating an alternative to highly invasive chemical and mechanical methods.
Sewage sludge is an abundant source of microorganisms that are metabolically active against numerous contaminants, and thus possibly useful in environmental biotechnologies. However, amongst the sewage sludge isolates, pathogenic bacteria can potentially be found, and such isolates should therefore be carefully tested before their application. A novel bacterial strain, Ochrobactrum sp. POC9, was isolated from a sewage sludge sample collected from a wastewater treatment plant. The strain exhibited lipolytic, proteolytic, cellulolytic, and amylolytic activities, which supports its application in biodegradation of complex organic compounds. We demonstrated that bioaugmentation with this strain substantially improved the overall biogas production and methane content during anaerobic digestion of sewage sludge. The POC9 genome content analysis provided a deeper insight into the biotechnological potential of this bacterium and revealed that it is a metalotolerant and a biofilm-producing strain capable of utilizing various toxic compounds. The strain is resistant to rifampicin, chloramphenicol and β-lactams. The corresponding antibiotic resistance genes (including blaOCH and cmlA/floR) were identified in the POC9 genome. Nevertheless, as only few genes in the POC9 genome might be linked to pathogenicity, and none of those genes is a critical virulence factor found in severe pathogens, the strain appears safe for application in environmental biotechnologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.