Solid-state lithium metal batteries offer superior energy density, longer lifespan, and enhanced safety compared to traditional liquid-electrolyte batteries. Their development has the potential to revolutionize battery technology, including the creation of electric vehicles with extended ranges and smaller more efficient portable devices. The employment of metallic lithium as the negative electrode allows the use of Li-free positive electrode materials, expanding the range of cathode choices and increasing the diversity of solid-state battery design options. In this review, we present recent developments in the configuration of solid-state lithium batteries with conversion-type cathodes, which cannot be paired with conventional graphite or advanced silicon anodes due to the lack of active lithium. Recent advancements in electrode and cell configuration have resulted in significant improvements in solid-state batteries with chalcogen, chalcogenide, and halide cathodes, including improved energy density, better rate capability, longer cycle life, and other notable benefits. To fully leverage the benefits of lithium metal anodes in solid-state batteries, high-capacity conversion-type cathodes are necessary. While challenges remain in optimizing the interface between solid-state electrolytes and conversion-type cathodes, this area of research presents significant opportunities for the development of improved battery systems and will require continued efforts to overcome these challenges.
This article presents a novel electroless gold plating method to fabricate a thin film heater for a new micro preconcentrator (μPCT) utilized in a micro gas chromatograph (μGC). The gold thin film utilized for heating with a high porosity is fabricated within the surface of the μPCT channel. The μPCT can be heated to >300 o C repeatedly by applying a constant electrical power. A commercial Tenax TA was used as an adsorbent. Four volatile organic compounds (VOCs), acetone, benzene, toluene and m-xylene, are successfully collected and concentrated with the narrow peak width at half height (PWHH) (1.92 to 3.88 s). Compared to our previous results, this study presents up to approximately 49% narrower PWHH and approximately six times faster heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.