Over the past few years, the billows of the digital trends and the exploding growth of electronic networks, such as worldwide web, global mobility networks, etc., have drastically changed our daily lifestyle. In view of the widespread applications of digital images, medical images, which are produced by a wide variety of medical appliances, are stored in digital form gradually. These digital images are very easy to be modified imperceptively by malicious intruders for illegal purposes. The well-known adage that "seeing is believing" seems not always a changeless truth. Therefore, protecting images from being altered becomes an important issue. Based on the lossless data-embedding techniques, two detection and restoration systems are proposed to cope with forgery of medical images in this paper. One of them has the ability to recover the whole blocks of the image and the other enables to recover only a particular region where a physician will be interested in, with a better visual quality. Without the need of comparing with the original image, these systems have a great advantage of detecting and locating forged parts of the image with high possibility. And then it can also restore the counterfeited parts. Furthermore, once an image is announced authentic, the original image can be derived from the stego-image losslessly. The experimental results show that the restored version of a tampered image in the first method is extremely close to the original one. As to the second method, the region of interest selected by a physician can be recovered without any loss, when it is tampered.
The proposed automatic screening system can be applied to the whole breast images stitched together via SBMD-based registration in order to detect tumors.
Characterization and quantification of diffuse parenchymal lung disease (DPLD) severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of DPLDs (emphysema, fibrosis, honeycombing, ground glass).The proposed methodology combines multiresolution image decomposition based on 3D morphological filtering, and graph-based classification for a full characterization of the parenchymal tissue. The very promising results obtained on a small patient database are good premises for a near implementation and validation of the proposed approach in clinical routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.