Enterovirus 71 (EV71) and coxsackievirus (CVA) are the most common causative factors for hand, foot, and mouth disease (HFMD) and neurological disorders in children. Lack of a reliable animal model is an issue in investigating EV71-induced disease manifestation in humans, and the current clinical therapies are symptomatic. We generated a novel EV71-infectious model with hSCARB2-transgenic mice expressing the discovered receptor human SCARB2 (hSCARB2). The challenge of hSCARB2-transgenic mice with clinical isolates of EV71 and CVA16 resulted in HFMD-like and neurological syndromes caused by E59 (B4) and N2838 (B5) strains, and lethal paralysis caused by 5746 (C2), N3340 (C4), and CVA16. EV71 viral loads were evident in the tissues and CNS accompanied the upregulated pro-inflammatory mediators (CXCL10, CCL3, TNF-α, and IL-6), correlating to recruitment of the infiltrated T lymphocytes that result in severe diseases. Transgenic mice pre-immunized with live E59 or the FI-E59 vaccine was able to resist the subsequent lethal challenge with EV71. These results indicate that hSCARB2-transgenic mice are a useful model for assessing anti-EV71 medications and for studying the pathogenesis induced by EV71.
Cross-talk between TGF-beta and IL-6 has been shown to direct the differentiation of CD4(+) cells into special IL-17-secreting cells, which are termed Th17 cells. In this study, we demonstrated that TGF-beta and IL-6 could stimulate CD8(+) cells to differentiate into noncytotoxic, IL-17-producing cells in MLC. These IL-17-producing CD8(+) cells exhibit a unique granzyme B(-)IFN-gamma(-)IL-10(-) phenotype. The mRNA level of Th2/T cytotoxic 2 (Tc2) transcription factors GATA3 and Th1/Tc1 transcription factors T-box expressed in T cell (T-bet) as well as its target H2.O-like homeobox (Hlx) is decreased in CD8(+) cells from TGF-beta- and IL-6-treated MLC. In addition, these CD8(+) cells display a marked up-regulation of retinoic acid-related orphan receptor-gammat, a key IL-17 transcription factor. These results demonstrate that the existence of an IL-17-producing CD8(+) subset belongs to neither the Tc1 nor the Tc2 subset and can be categorized as a T noncytotoxic 17 (Tnc17) subset.
BackgroundCoxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available.Principal FindingIn this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >106 the tissue culture's infectious dose (TCID50) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10−5 was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24–28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35–38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176–190.ConclusionThese results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary.
Pre-treatment with intravenous clonidine (2 microg/kg) suppressed the reflex cough induced by fentanyl, with mild hemodynamic changes. Therefore, intravenous clonidine may be a clinically useful method of suppressing fentanyl-induced cough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.