This study presents TriopusNet, a mobile wireless sensor network system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline. During automated deployment, TriopusNet runs a sensor deployment algorithm to determine node placement. While a node is flowing inside the pipeline, it performs placement by extending its mechanical arms to latch itself onto the pipe's inner surface. By continuously releasing nodes into pipes, the TriopusNet system builds a wireless network of interconnected sensor nodes. When a node runs at a low battery level or experiences a fault, the TriopusNet system releases a fresh node from the repository and performs a node replacement algorithm to replace the failed node with the fresh one. We have evaluated the TriopusNet system by creating and collecting real data from an experimental pipeline testbed. Comparing with the nonautomated static deployment, TriopusNet is able to use less sensor nodes to cover a sensing area in the pipes while maintaining network connectivity among nodes with high data collection rate. Experimental results also show that TriopusNet can recover from the network disconnection caused by a battery-depleted node and successfully replace the battery-depleted node with a fresh node.
This study presents TriopusNet, a mobile wireless sensor network system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline. During automated deployment, TriopusNet runs a sensor deployment algorithm to determine node placement. While a node is flowing inside the pipeline, it performs placement by extending its mechanical arms to latch itself onto the pipe's inner surface. By continuously releasing nodes into pipes, the TriopusNet system builds a wireless network of interconnected sensor nodes. When a node runs at a low battery level or experiences a fault, the TriopusNet system releases a fresh node from the repository and performs a node replacement algorithm to replace the failed node with the fresh one. We have evaluated the TriopusNet system by creating and collecting real data from an experimental pipeline testbed. Comparing with the nonautomated static deployment, TriopusNet is able to use less sensor nodes to cover a sensing area in the pipes while maintaining network connectivity among nodes with high data collection rate. Experimental results also show that TriopusNet can recover from the network disconnection caused by a battery-depleted node and successfully replace the battery-depleted node with a fresh node.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.