Pulmonary leukostasis can be associated with acute lung injury. We studied lung peroxidase activity using myeloperoxidase (MPO) as a granulocyte marker to quantitate pulmonary leukostasis in rabbits. Lungs were homogenized in detergent, freeze-thawed, sonified, and centrifuged, and supernatants were assayed for MPO. Seven extractions were performed, and greater than 80% of cumulative MPO was found in the first three extractions. By use of a three-extraction procedure, the mean lung MPO (delta A X min-1 X g tissue-1) was determined in normal [20.9 +/- 5.2 (SE)], granulocyte-depleted (6.5 +/- 2.0), saline-injected (22.2 +/- 5.6), and pneumococcus (PNC)-challenged (69.7 +/- 10.6) animals. Lung MPO was significantly decreased in granulocyte-depleted compared with normal animals (P less than 0.005) and significantly increased in PNC-challenged compared with saline-injected animals (P less than 0.001). MPO extracted from granulocytes and lungs from normal as well as PNC-challenged animals were all biochemically identical. Lung extract did not inhibit MPO, and no MPO was detected in bronchoalveolar lavage fluid obtained from leukostatic lungs. Lung MPO significantly (P less than 0.01) correlated with intravascular intrapulmonary granulocytes. Determination of lung MPO is a relatively simple quantitative method that can be used to detect pulmonary leukostasis.
Green tea leaves are the source for sinecatechins, the active ingredients of Veregen-the first botanical product to be approved as a prescription drug by the FDA.
Ionic liquid surfactants are a class of ionic liquids (ILs), which can form micelles in the aqueous solution. In this paper, we demonstrate a novel extracting system based on the use of IL surfactants in ultrasonic-assisted extraction followed by HPLC analysis. No organic solvents were used in the extraction, making this method environmentally friendly and more attractive than the conventional organic solvent-based extraction methods. As an example, this method was applied to determine tanshinones in Chinese herbal medicine Salvia miltiorrhiza bunge. The effect of the carbon chain length of the IL cation, as well as other influencing factors on ultrasonic-assisted extraction, was investigated in detail. Under the optimized conditions, satisfactory extraction efficiency was achieved with the recoveries ranging from 87.5 to 107.6%, and the RSDs were lower than 6%. This work shows a promising prospect of the IL surfactants in the extraction of active ingredients from herbs.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.
In this paper, ionic liquid (IL)-coated magnetic Fe(3)O(4) nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction (SPE) was investigated for the preconcentration of polycyclic aromatic hydrocarbons (PAHs) from environmental samples. Due to the high surface area and excellent adsorption capacity of the Fe(3)O(4) NPs after modification with ILs, satisfactory extraction recoveries can be achieved with only 80 mg Fe(3)O(4) NPs, 50 mg IL, 300 mL solution at pH = 10 and 10 min for equilibration. A comprehensive study of the adsorption conditions such as the amount of Fe(3)O(4) NPs and ILs, the solution pH, ionic strength, standing time, breakthrough volume, and desorption solvents was presented. The extraction ability of different coating agents, such as 1-hexadecyl-3-methylimidazolium bromide (C(16)mimBr), 1-decyl-3-methylimidazolium bromide (C(10)mimBr) and cationic surfactant cetyltrimethylammonium bromide (CTAB) was also compared. Under the optimized conditions, the recoveries for the water samples analysis were between 76 and 105% with relative standard deviations (RSDs) ranging from 3.9 to 6.9%, and the recoveries for soil samples were between 73 and 104% with RSDs ranging from 1.0 to 6.3%. In this method, only a small amount of C(16)mimBr (50 mg) and Fe(3)O(4) NPs (80 mg) was needed to obtain satisfactory recoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.