As Gu-Sui-Bu (GSB) is a commonly used Chinese medical herb for therapeutic treatment of bone-related diseases, naringin is its main active component. This study elucidates how various concentrations of naringin solution affect the activities of bone cells, based on colorimetric, alkaline phosphatase activity, nodule formation, and tartrate-resistant acid phosphatase activity assays to determine the optimal concentration of naringin. GGT composite was obtained by combining genipin cross-linked gelatin and β-tricalcium phosphate. GGTN composite was prepared by mixing GGT composite with the predetermined concentration of naringin. Porous GGT and GGTN composites were then made using a salt-leaching procedure. The potential of the composites in repairing bone defects was evaluated and compared in vivo by using the biological response of rabbit calvarial bone to these composites. Consequently, the most effective concentration of naringin was 10 mg/mL, which significantly enhanced the proliferation of osteoblasts, osteoclast activity, and nodule formation without affecting the alkaline phosphatase activity of osteoblasts and mitochondrial activity of mixed-bone cells. Radiographic analysis revealed greater new bone ingrowth in the GGTN composite than in the GGT composite at the same implantation time. Therefore, the GGTN composite is highly promising for use as a bone graft material.
Consideration of thermo-optic coefficients is essential in the applications of optical fibre sensors and high-speed fibre communication systems. The Fabry-Perot interference method is applied to study these coefficients of four types of commercial fibres. The results are in agreement with the values calculated from the Sellmeier equation for fused silica fibre, with a difference of only about 0:2% for the Corning single-mode fibre SMF-28. In order to apply fibre sensors to a high-radiation environment, the thermo-optic coefficients for these fibres have been investigated after exposure to heavy doses of gamma radiation, and their radiation resistance has been studied.
Mode-locking of semiconductor optical amplifier fiber laser (SOAFL) with 50 fs pulses by extracting the clock of an optical non-return-to-zero (NRZ) data injection is demonstrated. The efficiency of mode-locking in the SOAFL is improved by increasing the seeding power of the large-duty-cycle NRZ data from 3 to 8 dBm into the SOA driven at biased current of 350 mA. After linear dispersion compensation, the mode-locked SOAFL pulsewidth can be further shortened from 20 to 3 ps by increasing the DCF length up to 110 m. By using a booster the EDFA to enlarge the average power of mode-locked SOAFL pulse to 1.3 W, the shortest soliton pulse is occurred after propagating through a 12-m-long SMF. The amplified SOAFL pulse can be compressed to 50 fs after nonlinear compression with its spectral linewidth broadening to 64 nm. Nearly transform-limited time-bandwidth product of 0.436 and the maximum pulse compressing ratio of 400 are reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.