Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in retinoblastoma progression. In this study, we aimed to investigate the mechanism of lncRNA ZFPM2-AS1 (ZFPM2-AS1) in retinoblastoma progression. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting assays were performed to determine the expression of lncRNA, microRNA (miRNA), mRNA, and protein. The changes in cell proliferation, apoptosis, and cell migration were assessed by functional experiments. The interaction between ZFPM2-AS1, miR-511-3p, and paired box protein 6 (PAX6) was confirmed by a luciferase assay. Our study found that ZFPM2-AS1 and PAX6 were upregulated, whereas miR-511-3p was downregulated in retinoblastoma. ZFPM2-AS1 inhibition decreased the viability and migration of retinoblastoma cells. We also found that ZFPM2-AS1 targets miR-511-3p to upregulate PAX6 in Y79 and SO-RB50 cells. Moreover, we demonstrated that inhibiting miR-511-3p reversed the negative effects of silencing ZFPM2-AS1 and PAX6 on retinoblastoma cell viability and migration. In conclusion, retinoblastoma development is regulated by the ZFPM2-AS1/511-3p/PAX6 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.