The research on dynamic mechanical properties of rocks under high temperature is the basis for safe and efficient implementation of deep coal mining and underground coal gasification engineering. In this paper, the split Hopkinson bar (SHPB) with real-time high-temperature function was adopted to systematically study dynamic mechanical properties of sandstones. The research showed that under the condition of a fixed temperature, with the increase of strain rate, the dynamic compressive strength and dynamic peak strain of sandstone increased gradually, and the variation of dynamic elastic modulus with strain rate was not obvious. With the increase of temperature, the dynamic compressive strength of sandstone increased first and then decreased, the dynamic peak strain increased gradually, and the dynamic elastic modulus decreased overall. The variation law of macroscopic failure mode and energy dissipation density with temperature was revealed, and the change mechanism was explained considering the influence of high temperature on the internal structure of sandstone. Based on the principle of component combination and the theory of micro-element strength distribution, the dynamic statistical damage constitutive model was established, and its parameters had certain physical significance. Compared with the experimental results, the established model can well describe the dynamic stress-strain relationship of sandstone under real-time high temperature.
The water-sediment two-phase seepage in coarse fractures is one of the major factors to trigger mine water inrush disasters. Based on seepage mechanics theory, a mechanical model of the water-sediment two-phase seepage in coarse fractures was established. An experimental system was also developed to study the seepage characteristics under various conditions. The relationships between the absolute value of the pressure gradient and the seepage velocity were analyzed during the test process. The nonlinear characteristics of the seepage test were revealed. In addition, variation laws of the absolute value of the pressure gradient with the sand volume fraction and the sand particle size were illustrated, which were related to the loss of pressure during the particle movement. The impacts of the sand volume fraction and the sand particle size on the equivalent fluidity and β -factor of non-Darcy flow were discussed and analyzed. It was determined that the local turbulence was the main reason for the change of nonlinear variation characteristics of seepage parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.