A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m 2 /g) than SGB or oat husk materials.Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.
The grafting reactivities with glycidyl methacrylate (GMA) of five xylans from hardwood and cereal sources were compared. The structural property that best predicted the reactivities of xylans with GMA was the fraction of 4-O-methylglucuronic acid (MeGlcA) substitution. A comparatively high level of arabinose substitution was also positively correlated to reactivity with GMA. The impact of MeGlcA and arabinose branching groups is likely attributed to the solubilizing effect of these substituents. Consistent with this prediction, low water solubility and high lignin content were found to hinder reactivity. Even though oligomeric substrates have the advantage of water solubility, modified xylo-oligosaccharides were difficult to purify. Accordingly, delignified and high-molecular weight xylans that are soluble or dispersible in water are best suited for this type of backbone derivatization. Adsorption studies with a quartz crystal microbalance with dissipation indicated that grafting lowered the total adsorption of arabinoxylan but did not significantly affect the fraction of xylans adsorbed irreversibly on cellulose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.