Cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with thermoresponsive macromolecules. The CNCs were grafted with poly(N-isopropylacrylamide) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) under various conditions at room temperature. The grafting process was confirmed via Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy and the different molecular masses of the grafts were quantified and found to depend on the initiator and monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. It is expected that suspension stability, interfacial interactions, friction, and other properties of grafted CNCs can be controlled by changes in temperature and provide a unique platform for further development of stimuli-responsive nanomaterials.
The development of 'user-friendly' surface analytical instrumentation has expanded the application of x-ray photoelectron spectroscopy (XPS) towards softer and more complex composite materials. However, the knowledge of fundamental phenomena in practical, interdisciplinary applications is dearly needed. In the case of polymers and polymer-based or -reinforced composites, the analytical problems are not only related to detection limits and resolution; indeed, the effects of contamination and experimental artefacts on interpretation of the carbon signal are often the more crucial challenge.As a biopolymer, natural cellulose fibres provide an interesting model system for polymer studies. Numerous published XPS studies on lignocelluloses highlight both the possibilities and the problems of the surface analytical probes in analysis of air-exposed organic materials.We report XPS experiments of cellulosic natural fibre materials, discussing the effects of sample storage, UHV exposure, radiation doses, charging and data analysis. Based on a large body of experimental data we also propose that clean paper specimens could be used as an in-situ reference in polymer studies.
Native cellulose model films containing both amorphous and crystalline cellulose I regions were prepared by spin-coating aqueous cellulose nanofibril dispersions onto silica substrates. Nanofibrils from wood pulp with low and high charge density were used to prepare the model films. Because the low charged nanofibrils did not fully cover the silica substrates, an anchoring substance was selected to improve the coverage. The model surfaces were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of nanofibril charge density, electrolyte concentration, and pH on swelling and surface interactions of the model film was studied by quartz crystal microbalance with dissipation (QCM-D) and AFM force measurements. The results showed that the best coverage for the low charged fibrils was achieved by using 3-aminopropyltrimethoxysilane (APTS) as an anchoring substance and hence it was chosen as the anchor. The AFM and XPS measurements showed that the fibrils are covering the substrates. Charge density of the fibrils affected the morphology of the model surfaces. The low charged fibrils formed a network structure while the highly charged fibrils formed denser film structure. The average thickness of the films corresponded to a monolayer of fibrils, and the average rms roughness of the films was 4 and 2 nm for the low and high charged nanofibril films, respectively. The model surfaces were stable in QCM-D swelling experiments, and the behavior of the nanofibril surfaces at different electrolyte concentrations and pHs correlated with other studies and the theories of Donnan. The AFM force measurements with the model surfaces showed well reproducible results, and the swelling results correlated with the swelling observed by QCM-D. Both steric and electrostatic forces were observed and the influence of steric forces increased as the films were swelling due to changes in pH and electrolyte concentration. These films differ from previous model cellulose films due to their chemical composition (crystalline cellulose I and amorphous regions) and fibrillar structure and hence serve as excellent models for the pulp fiber surface.
Microfibrillated cellulose (MFC) obtained by disintegration of bleached softwood sulphite pulp in a homogenizer, was hydrophobically modified by surface silylation with chlorodimethyl isopropylsilane (CDMIPS). The silylated MFC was characterized by Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), transmission electron spectroscopy (TEM), X-ray photoelectron spectroscopy (XPS) and white light interferometry (WLI). The degree of surface substitution (DSS) was determined using Si concentrations from XPS survey scans, as well as deconvoluted peaks in high-resolution C1s XPS spectra. The DSS values obtained by the two methods were found to be in good agreement. MFC with DSS between 0.6 and 1 could be dispersed in a non-flocculating manner into non-polar solvents, TEM observations showing that the material had kept its initial morphological integrity. However, when CDMIPS in excess of 5 mol CDMIPS/glucose unit in the MFC was used, partial solubilization of the MFC occurred, resulting in a drop in the observed DSS and a loss of the microfibrillar character of the material. The wetting properties of films cast from suspension of the silylated MFC were also investigated. The contact angles of water on the films increased with increasing DSS of the MFC, approaching the contact angles observed on super hydrophobic surfaces for the MFC with the highest degree of substitution. This is believed to originate from a combination of low surface energy and surface microstructure in the films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.