Most of the previous work on threshold-cryptography-based distributed CA concentrates on the initial systems configurations and concrete protocols design, ignoring the efficiency and effectiveness of the key management service during its operation, and always assuming that there are honest nodes to carry out the service faithfully. This paper focuses on developing a selection mechanism in MANETs with selfish nodes, to dynamically select a coalition of nodes carrying out the threshold key management service optimally during system operation. First, we formulate the dynamic nodes selection problem as a combinatorial optimization problem, with the objectives of maximizing the success ratio of key management service and minimizing the nodes' cost of security and energy. Then, to ensure truth telling is the dominant strategy for any node in our scenario, we extend the payment structure of the classical Vickrey-Clarke-Groves (VCG) mechanism design framework and divide the payment into pieces to the nodes, with the consideration of their actual execution effectiveness. Simulations show that the proposed mechanism enjoys improvements of both the success ratio of key management service and lifetime of the network, as well as reductions of both the cost of participating nodes and compromising probability of MANETs, compared with the existing work.
As an emerging network, Delay Tolerant Mobile Sensor Network (DTMSN) is susceptible to be attacked because of its limited resources and intermittent connectivity. Though authentication technology is usually used to prevent network from attacks, it is a challenging work in delay tolerant circumstance. In this paper, a node mutual authentication scheme based on Physical Unclonable Function (PUF) is proposed for DTMSN. We take advantage of the physical characteristics of chips with PUFs to prevent sensor nodes from cloning. Analysis indicates that the scheme is efficient and robust against different attacks, such as clone attack, replay attack, tampering attack, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.