Background Alignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined benchmarking consensus hampers their performance assessment. Results Here, we present a community resource ( http://afproject.org ) to establish standards for comparing alignment-free approaches across different areas of sequence-based research. We characterize 74 AF methods available in 24 software tools for five research applications, namely, protein sequence classification, gene tree inference, regulatory element detection, genome-based phylogenetic inference, and reconstruction of species trees under horizontal gene transfer and recombination events. Conclusion The interactive web service allows researchers to explore the performance of alignment-free tools relevant to their data types and analytical goals. It also allows method developers to assess their own algorithms and compare them with current state-of-the-art tools, accelerating the development of new, more accurate AF solutions. Electronic supplementary material The online version of this article (10.1186/s13059-019-1755-7) contains supplementary material, which is available to authorized users.
Metagenomic sequencing has greatly enhanced the discovery of viral genomic sequences; however, it remains challenging to identify the host(s) of these new viruses. We developed VirHostMatcher-Net, a flexible, network-based, Markov random field framework for predicting virus–prokaryote interactions using multiple, integrated features: CRISPR sequences and alignment-free similarity measures ($s_2^*$ and WIsH). Evaluation of this method on a benchmark set of 1462 known virus–prokaryote pairs yielded host prediction accuracy of 59% and 86% at the genus and phylum levels, representing 16–27% and 6–10% improvement, respectively, over previous single-feature prediction approaches. We applied our host prediction tool to crAssphage, a human gut phage, and two metagenomic virus datasets: marine viruses and viral contigs recovered from globally distributed, diverse habitats. Host predictions were frequently consistent with those of previous studies, but more importantly, this new tool made many more confident predictions than previous tools, up to nearly 3-fold more (n > 27 000), greatly expanding the diversity of known virus–host interactions.
Genome and metagenome comparisons based on large amounts of next generation sequencing (NGS) data pose significant challenges for alignment-based approaches due to the huge data size and the relatively short length of the reads. Alignment-free approaches based on the counts of word patterns in NGS data do not depend on the complete genome and are generally computationally efficient. Thus, they contribute significantly to genome and metagenome comparison. Recently, novel statistical approaches have been developed for the comparison of both long and shotgun sequences. These approaches have been applied to many problems including the comparison of gene regulatory regions, genome sequences, metagenomes, binning contigs in metagenomic data, identification of virus-host interactions, and detection of horizontal gene transfers. We provide an updated review of these applications and other related developments of word-count based approaches for alignment-free sequence analysis.
Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^*$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$d_2^S$\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE.
2 Alignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined benchmarking consensus hampers their performance assessment. Here, we present a community resource (http://afproject.org) to establish standards for comparing alignment-free approaches across different areas of sequence-based research. We characterize 74 AF methods available in 24 software tools for five research applications, namely, protein sequence classification, gene tree inference, regulatory element detection, genome-based phylogenetic inference and reconstruction of species trees under horizontal gene transfer and recombination events.The interactive web service allows researchers to explore the performance of alignmentfree tools relevant to their data types and analytical goals. It also allows method developers to assess their own algorithms and compare them with current state-of-theart tools, accelerating the development of new, more accurate AF solutions. BACKGROUNDComparative analysis of DNA and amino acid sequences is of fundamental importance in biological research, particularly in molecular biology and genomics. It is the first and key step in molecular evolutionary analysis, gene function and regulatory region prediction, sequence assembly, homology searching, molecular structure prediction, gene discovery and protein structure-function relationships analysis. Traditionally, sequence comparison was based on pairwise or multiple sequence alignment (MSA). Software tools for sequence alignment, such as BLAST [1] and CLUSTAL [2], are the most widely used bioinformatics methods.Although alignment-based approaches generally remain the references for sequence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.