Detailed knowledge of the inhibitory input to trigeminal motoneurons is needed to understand better the central mechanisms of jaw movements. Here a quantitative analysis of terminals contacting somata of jaw-closing (JC) and jaw-opening (JO) alpha-motoneurons, and of JC gamma-motoneurons, was performed by use of serial sectioning and postembedding immunogold cytochemistry. For each type of motoneuron, the synaptic boutons were classified into four groups, i.e., immunonegative boutons or boutons immunoreactive to glycine only, to gamma-aminobutyric acid (GABA) only, or to both glycine and GABA. The density of immunolabeled boutons was much higher for the alpha- than for the gamma-motoneurons. In the alpha-motoneuron populations, the immunolabeled boutons were subdivided into one large group of boutons containing glycine-like immunoreactivity only, one group of intermediate size harboring both glycine- and GABA-like immunoreactivity, and a small group of boutons containing GABA-like immunoreactivity only. The percentage of immunolabeled boutons was higher for JC than JO alpha-motoneurons, the most pronounced difference being observed for glycine-like immunoreactivity. In contrast, on the somatic membrane of gamma-motoneurons, the three types of immunoreactive bouton occurred at similar frequencies. These results indicate that trigeminal motoneurons are strongly and differentially controlled by premotoneurons containing glycine and/or GABA and suggest that these neurons play an important role for the generation of masticatory patterns.
Previous studies provide evidence that a structure/function correlation exists in the distinct zones of the trigeminal sensory nuclei. To evaluate this relationship, we examined the ultrastructure of afferent terminals from the tooth pulp in the rat trigeminal sensory nuclei: the principalis (Vp), the dorsomedial part of oral nucleus (Vdm), and the superficial layers of caudalis (Vc), by using transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). A total of 93 labeled boutons were serially sectioned, in which some sections were incubated with gamma-aminobutyric acid (GABA) antiserum. Almost all labeled boutons formed asymmetric contact with nonprimary dendrites, in which more than half of labeled boutons in the Vc made synapses with their spines. The labeled boutons could be divided into two types on the basis of numbers of dense-cored vesicles (DCVs) in a boutons: S-type and DCV-type. Almost all labeled boutons in the Vp and Vdm were S-type, whereas two types were distributed evenly in the Vc. In contrast to DCV-type boutons, the S-type was frequently postsynaptic to unlabeled axon terminals containing a mixture of round, oval, and flattened vesicles (p-endings) and forming symmetrical synapses. Most p-endings examined were immunoreactive to GABA. The frequency of axoaxonic contacts was higher for labeled boutons in the Vp than in the Vdm and Vc. These results suggest that the three structures of trigeminal sensory nuclei serve distinct functions in nociceptive processing.
A previous study has shown that mesencephalic periodontal afferent terminals receive contacts more frequently from axonal endings containing pleomorphic, synaptic vesicles (P-endings) in the supratrigeminal nucleus (Vsup) than in the trigeminal motor nucleus, suggesting that interneurons in Vsup play an important role in modulating the jaw-closing reflex. The present study was attempted to identify neurotransmitters in P-endings associated with mesencephalic periodontal afferents in cat Vsup through the use of intracellular staining of horseradish peroxidase combined with the postembedding immunogold methods. A morphometric analysis was carried out to compare the ultrastructural features of these two types of terminals. Serial sections of 31 labeled boutons and of their associated 38 P-endings were examined. They were processed for postembedding immunogold labeling with antibodies to the neurotransmitter gamma-aminobutyric acid (GABA). The 38 P-endings presynaptic to periodontal afferents showed GABA-like immunoreactivity, but the afferent terminals were free from the labeling. The morphometric analysis indicated that bouton volume, apposed surface area, total active zone size, and mitochondrial volume were smaller in GABA-immunoreactive P-endings than in periodontal afferents, but the pooled data of the two types of terminals showed that each synaptic parameter was highly correlated in a positive, linear manner with bouton volume. These observations provide evidence that P-endings presynaptic to mesencephalic periodontal afferents contain the neurotransmitter GABA and that their axoaxonic synapses are organized in accordance with the ultrastructural "size principle" proposed by Pierce and Mendell (Pierce and Mendell [1993] J. Neurosci. 13:4748-4763) on Ia-motoneuron synapses.
This study analyzed quantitatively the ultrastructural features of tooth pulp afferent terminals and their presynaptic axonal endings (p-endings) in the trigeminal principal (Vp), dorsomedial oral (Vdm), and caudal nuclei (Vc). Mitochondrial volume, active zone area, apposed surface area, and vesicle number were highly correlated with afferent bouton volume. The afferent bouton volume varied widely in Vp, compared to that in Vdm and Vc. The values of all parameters of p-endings were within a narrow range, and were smaller than those of afferent boutons. The afferent bouton volume correlated with the number of postsynaptic dendrites and p-endings. These results suggest that pulpal afferent information is regulated in a unique manner in the each trigeminal sensory nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.