While the current smartwatches and cellphones can readily track mobility and vital signs, a new generation of wearable devices is rapidly developing to enable users to monitor their health parameters at the molecular level. Within this emerging class of wearables, microneedle‐based transdermal sensors are in a prime position to play a key role in synergizing the significant advantages of dermal interstitial fluid (ISF) as a rich source of clinical indicators and painless skin pricking to allow the collection of real‐time diagnostic information. While initial efforts of microneedle sensing focused on ISF extraction coupled with either on‐chip analysis or off‐chip instrumentation, the latest trend has been oriented toward assembling electrochemical biosensors on the tip of microneedles to allow direct continuous chemical measurements. In this context, significant advances have recently been made in exploiting microneedle‐based devices for real‐time monitoring of various metabolites, electrolytes, and therapeutics and toward the simultaneous multiplexed detection of key chemical markers; yet, there are several grand challenges that still exist. In this review, we outline current progress, recent trends, and new capabilities of microneedle‐empowered sensors, along with the current unmet challenges and a future roadmap toward transforming the latest innovations in the field to commercial products.
Biomarkers are crucial biological indicators in medical diagnostics and therapy. However, the process of biomarker discovery and validation is hindered by a lack of standardized protocols for analytical studies, storage and sample collection. Wearable chemical sensors provide a real-time, non-invasive alternative to typical laboratory blood analysis, and are an effective tool for exploring novel biomarkers in alternative body fluids, such as sweat, saliva, tears and interstitial fluid. These devices may enable remote at-home personalized health monitoring and substantially reduce the healthcare costs. This Review introduces criteria, strategies and technologies involved in biomarker discovery using wearable chemical sensors. Electrochemical and optical detection techniques are discussed, along with the materials and system-level considerations for wearable chemical sensors. Lastly, this Review describes how the large sets of temporal data collected by wearable sensors, coupled with modern data analysis approaches, would open the door for discovering new biomarkers towards precision medicine.
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.