Age is the most significant risk factor for atherosclerosis; however, the link between age and atherosclerosis is poorly understood. During both aging and atherosclerosis progression, the blood vessel wall stiffens owing to alterations in the extracellular matrix. Using in vitro and ex vivo models of vessel-wall stiffness and aging, we show that stiffening of extracellular matrix within the intima promotes endothelial cell permeability—a hallmark of atherogenesis. When cultured on hydrogels fabricated to match the elasticity of young and aging intima, endothelial monolayers exhibit increased permeability and disrupted cell-cell junctions on stiffer matrices. In parallel experiments, we showed a corresponding increase in cell-cell junction width with age in ex vivo aortas from young (10 weeks) and old (21 to 25 months) healthy mice. To investigate the mechanism by which matrix stiffening alters monolayer integrity, we found that cell contractility increases with increased matrix stiffness, mechanically destabilizing cell-cell junctions. This increase in endothelial permeability results in increased leukocyte extravasation, which is a critical step in atherosclerotic plaque formation. Mild inhibition of Rho-dependent cell contractility using Y-27632, an inhibitor of Rho-associated kinase, or siRNA restored monolayer integrity in vitro and in vivo. Our results suggest that extracellular matrix stiffening alone, which occurs during aging, can lead to endothelial monolayer disruption and atherosclerosis pathogenesis. Because previous therapeutics designed to decrease vascular stiffness have been met with limited success, our findings could be the basis for the design of therapeutics that target the Rho-dependent cellular contractile response to matrix stiffening, rather than stiffness itself, to more effectively prevent atherosclerosis progression.
Metastasis through the bloodstream contributes to poor prognosis in many types of cancer. Mounting evidence implicates selectinbased adhesive interactions between cancer cells and the blood vessel wall as facilitating this process, in a manner similar to leukocyte trafficking during inflammation. Here, we describe a unique approach to target and kill colon and prostate cancer cells in the blood that causes circulating leukocytes to present the cancer-specific TNF-related apoptosis inducing ligand (TRAIL) on their surface along with E-selectin adhesion receptor. This approach, demonstrated in vitro with human blood and also in mice, mimics the cytotoxic activity of natural killer cells and increases the surface area available for delivery of the receptor-mediated signal. The resulting "unnatural killer cells" hold promise as an effective means to neutralize circulating tumor cells that enter blood with the potential to form new metastases.drug delivery | nanomedicine
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
Thrombi that occlude blood vessels can be resolved with fibrinolytic agents that degrade fibrin, the polymer that forms between and around platelets to provide mechanical stability. Fibrinolysis rates however are often constrained by transport-limited delivery to and penetration of fibrinolytics into the thrombus. Here, these limitations are overcome with colloidal microwheel (µwheel) assemblies functionalized with the fibrinolytic tissue-type plasminogen activator (tPA) that assemble, rotate, translate, and eventually disassemble via applied magnetic fields. These microwheels lead to rapid fibrinolysis by delivering a high local concentration of tPA to induce surface lysis and, by taking advantage of corkscrew motion, mechanically penetrating into fibrin gels and platelet-rich thrombi to initiate bulk degradation. Fibrinolysis of plasma-derived fibrin gels by tPA-microwheels is fivefold faster than with 1 µg mL tPA. µWheels following corkscrew trajectories can also penetrate through 100 µm sized platelet-rich thrombi formed in a microfluidic model of hemostasis in ≈5 min. This unique combination of surface and bulk dissolution mechanisms with mechanical action yields a targeted fibrinolysis strategy that could be significantly faster than approaches relying on diffusion alone, making it well-suited for occlusions in small or penetrating vessels not accessible to catheter-based removal.
The survival rate for patients with metastases versus localized cancer is dramatically reduced, with most deaths being associated with the formation of secondary tumors. Circulating cancer cells interact with the endothelial lining of the vasculature via a series of adhesive interactions that facilitate tethering and firm adhesion of cancer cells in the initial steps of metastasis. TNF-related apoptosis-inducing ligand (TRAIL) holds promise as a tumor-specific cancer therapeutic, by inducing a death signal by apoptosis via the caspase pathway. In this study, we exploit this phenomenon to deliver a receptor-mediated apoptosis signal to leukemic cells adhesively rolling along a TRAIL and selectin-bearing surface. Results show that cancer cells exhibit selectin-mediated rolling in capillary flow chambers, and that the rolling velocities can be controlled by varying the selectin and selectin surface density and the applied shear stress. It was determined that a 1 h rolling exposure to a functionalized TRAIL and E-selectin surface was sufficient to kill 30% of captured cells compared to static conditions in which 4 h exposure was necessary to kill 30% of the cells. Thus, we conclude that rolling delivery is more effective than static exposure to a TRAIL immobilized surface. We have also verified that there is no significant effect of TRAIL on hematopoietic stem cells and other normal blood cells. This represents the first demonstration of a novel biomimetic method to capture metastatic cells from circulation and deliver an apoptotic signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.