Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium. However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed.
Scientists often need to know whether pairs of entities tend to occur together or independently. Standard approaches to this issue use co-occurrence indices such as Jaccard, Sørensen-Dice, and Simpson. We show that these indices are sensitive to the prevalences of the entities they describe and that this invalidates their interpretability. We propose an index, α, that is insensitive to prevalences. Published datasets reanalyzed with both α and Jaccard’s index ( J ) yield profoundly different biological inferences. For example, a published analysis using J contradicted predictions of the island biogeography theory finding that community stability increased with increasing physical isolation. Reanalysis of the same dataset with the estimator α ˆ reversed that result and supported theoretical predictions. We found similarly marked effects in reanalyses of antibiotic cross-resistance and human disease biomarkers. Our index α is not merely an improvement; its use changes data interpretation in fundamental ways.
Kashmir musk deer Moschus cupreus (KMD) are the least studied species of musk deer. We compiled genetically validated occurrence records of KMD to construct species distribution models using Maximum entropy. We show that the distribution of KMD is limited between central nepal on the east and northeast Afghanistan on the west and is primarily determined by precipitation of driest quarter, annual mean temperature, water vapor, and precipitation during the coldest quarter. precipitation being the most influential determinant of distribution suggests the importance of pre-monsoon moisture for growth of the dominant vegetation, Himalayan birch Betula utilis and Himalayan fir Abies spectabilis, in KMD's preferred forests. All four Representative concentration pathway Scenarios result an expansion of suitable habitat in Uttarakhand, india, west nepal and their associated areas in china in 2050s and 2070s but a dramatic loss of suitable habitat elsewhere (Kashmir region and Pakistan-Afghanistan border). About 1/4 th of the current habitat will remain as climate refugia in future. Since the existing network of protected areas will only include a tiny fraction (4%) of the climatic refugia of KMD, the fate of the species will be determined by the interplay of more urgent short-term forces of poaching and habitat degradation and long-term forces of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.