Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple k-means nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR) measure and the critical-band energy spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional acoustic indicator that supplements the clinical diagnostic features for voice evaluation.
Multipliers are the building blocks of every digital signal processor (DSP). The performance of any digital system is dependent on the adder design and to a large extent on the multiplier block. Area and power dissipation are the major considerations in a multiplier design due to its complexity. In this paper, an efficient multiplier “bypass zero feed multiplicand directly,” based on shift-add multiplication, has been proposed for low-power application. As the shift-add multiplication is a repetitive process of addition, the implementation time of an adder is reduced by using the proposed parallel prefix adders designed based on revised Ling equations. The proposed 8-bit, 16-bit and 32-bit multipliers are implemented using 180-nm and 90-nm CMOS technologies. Simulation results reveal that the proposed multiplier is fast and lowers the power by 35% predominantly for a 32-bit multiplier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.