The broad-spectrum mildew resistance genes RPW8.1 and RPW8.2 define a unique type of plant disease resistance (R) gene, and so far homologous sequences have been found in Arabidopsis thaliana only, which suggests a recent origin. In addition to RPW8.1 and RPW8.2, the RPW8 locus contains three homologs of RPW8, HR1, HR2, and HR3, which do not contribute to powdery mildew resistance. To investigate whether RPW8 has originated recently, and if so the processes involved, we have isolated and analyzed the syntenic RPW8 loci from Arabidopsis lyrata, and from Brassica rapa and B. oleracea. The A. lyrata locus contains four genes orthologous to HR1, HR2, HR3, and RPW8.2, respectively. Two syntenic loci have been characterized in Brassica; one locus contains three genes and is present in both B. oleracea and B. rapa, and the other locus contains a single gene and is detected in B. rapa only. The Brassica homologs have highest similarity to HR3. Sequence analyses suggested that the RPW8 gene family in Brassicaceae originated from an HR3-like ancestor gene through a series of duplications and that RPW8.1 and RPW8.2 evolved from functional diversification through positive selection several MYA. Examination of the sequence polymorphism of 32 A. thaliana accessions at the RPW8 locus and their disease reaction phenotypes revealed that the polymorphic RPW8 locus defines a major source of resistance to powdery mildew diseases. A possible evolutionary mechanism by which functional polymorphism at the AtRPW8 locus has been maintained in contemporary populations of A. thaliana is discussed.
Natural herbicide is considered as a sustainable approach for weed management in agriculture. Here, allelopathic activities of Piper betle L. extract (BE) and known allelochemical eugenol (EU) were studied against rice and associated weeds in terms of germination and seedling growth. Five plant species including a rice crop (Oryza sativa L.); a dicot weed, false daisy (Eclipta prostrata (L.) L.); and three monocot weeds, barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), swollen fingergrass (Chloris barbata Sw.), and weedy rice (Oryza sativa f. spontanea Roshev.) were studied. The paper-based results demonstrated that BE and EU had inhibitory effects on seed germination and seedling growth. The IC50 values of BE and EU for seed germination were ranked from swollen fingergrass, to false daisy, barnyard grass, rice, and weedy rice, respectively. The ratio of root to shoot length of the seedlings indicated that the roots were more affected by the treatments than the shoots. In addition, the gel-based results showed the reduction of the rice seedling root system, especially on lateral root length and the numbers upon the treatments. Taken together, BE had an allelopathic activity similar to that of EU. Interestingly, the major paddy weed, barnyard grass, was more sensitive to BE than rice, underlining BE as a natural herbicide in rice agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.