Sulfonated copolyanilines (SPANs), SPAN-40 and SPAN-75, were prepared and applied in this tissue engineering study. SPAN scaffolds (SPANs) and control group polyaniline (PANI) were synthesized by performing oxidative polymerization. To further research the effects of neuron regeneration, PC12 cells were cultured on as-prepared PANI and SPANs with laminin (La) treatment under electrical stimulation. The effects on PC12 cell differentiation were investigated by controlling the amount of sulfonated groups (−SO 3 H) in the SPAN chain, the electrical stimulation voltage, and the presence or absence of La coating. The adhesion and proliferation of cells increased with the degree of sulfonation; La and electrical stimulation further promoted neuronal cell differentiation as increased neurite length was demonstrated in the micrograph analyses. In summary, the sulfonated copolyaniline coated with La had the best effect on neuronal differentiation under electrical stimulation, suggesting its potential as a substrate for nerve tissue engineering.
In this paper, comparative studies of hydrophilic and hydrophobic mesoporous silica particles (MSPs) on the dielectric properties of their derivative polyester imide (PEI) composite membranes were investigated. A series of hydrophilic and hydrophobic MSPs were synthesized with the base-catalyzed sol-gel process of TEOS, MTMS, and APTES at a distinctive feeding ratio with a non-surfactant template of D-(-)-Fructose as the pore-forming agent. Subsequently, the MSPs were blended with the diamine of APAB, followed by introducing the dianhydride of TAHQ with mechanical stirring for 24 h. The obtained viscous solution was subsequently coated onto a copper foil, 36 μm in thickness, followed by performing thermal imidization at specifically programmed heating. The dielectric constant of the prepared membranes was found to show an obvious trend: PEI containing hydrophilic MSPs > PEI > PEI containing hydrophobic MSPs. Moreover, the higher the loading of hydrophilic MSPs, the higher the value of the dielectric constant and loss tangent. On the contrary, the higher the loading of hydrophobic MSPs, the lower the value of the dielectric constant with an almost unchanged loss tangent.
In this paper, we propose a new method to prepare X-ray absorption gratings. The thermal composite absorption gratings with periods of 80 μm and 140 μm are successfully fabricated by using the difference in X-ray absorption between aluminum and silver film. The production process and the use of equipment are simple and easy to implement. A number of absorption gratings can be produced in one production, which greatly reduces the cost of gratings. Finally, the X-ray single absorption grating imaging experiment is used to verify the effectiveness of the thermal composite absorption grating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.