Mutations in either the TSC1 or TSC2 tumor suppressor gene are responsible for Tuberous Sclerosis Complex. The gene products of TSC1 and TSC2 form a functional complex and inhibit the phosphorylation of S6K and 4EBP1, two key regulators of translation. Here, we describe that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway. Under energy starvation conditions, the AMP-activated protein kinase (AMPK) phosphorylates TSC2 and enhances its activity. Phosphorylation of TSC2 by AMPK is required for translation regulation and cell size control in response to energy deprivation. Furthermore, TSC2 and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis. These observations demonstrate a model where TSC2 functions as a key player in regulation of the common mTOR pathway of protein synthesis, cell growth, and viability in response to cellular energy levels.
SUMMARY
IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as α-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce α-KG and accumulate an α-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.