The programmed death-ligand 1 (PD-L1), by binding to PD-1 on the surface of immune cells, activates a major immune checkpoint pathway. Elevated expression of PD-L1 in tumor cells mediates tumor-induced T-cell exhaustion and immune suppression; therefore protect the survival of tumor cells. Although blockade of the PD-1/PD-L1 axis exhibits great potential in cancer treatment, mechanisms driving the up-regulation of PD-L1 in tumor cells remain not fully understood. Here we found that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) is required for PD-L1 expression in triple negative breast cancer cells. Depletion of PIPKIγ inhibits both intrinsic and induced PD-L1 expression. Results from further analyses suggest that PIPKIγ promotes the transcription of the PD-L1 gene by activating the NF-κB pathway in these cells. These results demonstrate that PIPKIγ-dependent expression of PD-L1 is likely important for the progression of triple negative breast cancer.
Assembly of E-cadherin–based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIγ also interacts with the μ subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIγ or disruption of PIPKIγ binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIγ binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIγ serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Iγ phosphatidylinositol phosphate kinase (PIPKIγ661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIγ661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIγ661 and Src. The phosphorylation of Y644 results in an ∼15-fold increase in binding affinity to the talin head domain and blocks β-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a “molecular switch” for talin binding between PIPKIγ661 and β-integrin that may regulate dynamic FA turnover.
The bidirectional movement of intraflagellar transport (IFT) particles, which are composed of motors, IFT-A and IFT-B subcomplexes, and cargos, is required for cilia biogenesis and signaling 1, 2. A successful IFT cycle depends on the massive IFT particle to be properly assembled at the ciliary base and turned around from anterograde to retrograde transport at the ciliary tip. However, how IFT assembly and turnaround are regulated in vivo remains elusive. From a whole-genome mutagenesis screen in C. elegans, we identified two hypomorphic mutations in dyf-2 and bbs-1 as the only mutants showing normal anterograde IFT transport but defective IFT turnaround at the ciliary tip. Further analyses revealed that the BBSome 3, 4, a group of conserved proteins affected in human Bardet-Biedl syndrome (BBS) 5, assembles IFT complexes at the ciliary base, then binds to anterograde IFT particle in a DYF-2- (an ortholog of human WDR19) and BBS-1-dependent manner, and lastly reaches the ciliary tip to regulate proper IFT recycling. Our results unravel the BBSome as the key player regulating IFT assembly and turnaround in cilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.