ObjectiveTo investigate the effectiveness and safety of Tai Chi Chuan (TCC) on physical and psychological health of college students.MethodsTwo hundred six college students were recruited and randomly allocated to a control group or a TCC exercise group in an equal ratio. Participants in the control group were instructed to maintain their original activity level and those in the TCC exercise group received 12 weeks of TCC exercise training based on their original activity level. Physical and psychological outcomes were evaluated at baseline, 13 weeks and 25 weeks. Intention-to-treat analysis was performed for the above outcomes.ResultsCompared with the control group, the TCC exercise group showed significant improvements at the end of the 12-week intervention period for flexibility (length of Sit and Reach (cm): TCC group 14.09±7.40 versus control 12.88±6.57, P = 0.039 adjusted for its baseline measures using a general linear model) and balance ability (open eyes perimeter: TCC group 235.6(191~314) versus control 261(216~300); closed eyes perimeter: TCC group 370.5 (284~454) versus control 367 (293~483); P = 0.0414, 0.008, respectively, adjusted for corresponding baseline measures using a general linear model). No significant changes in other physical and mental outcomes were found between the two groups. No adverse events were reported during the study period.ConclusionTCC exercise was beneficial in college students for improving flexibility and balance capability to some extent, compared with usual exercise.Trial RegistrationChinese Clinical Trial Registry ChiCTR-TRC-13003328
The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprotein convertase subtilisin/kexin type 9 (PCSK9) in posttranscriptional level. The dysregulation of LDLR expression results in abnormal lipid accumulation in cells and tissues, such as vascular smooth muscle cells, hepatic cells, renal mesangial cells, renal tubular cells and podocytes. It has been demonstrated that inflammation, renin-angiotensin system (RAS) activation, and hyperglycemia induce the disruption of LDLR pathway, which might contribute to lipid disorder-mediated organ injury (atherosclerosis, non-alcoholic fatty liver disease, kidney fibrosis, etc). The mammalian target of rapamycin (mTOR) pathway is a critical mediator in the disruption of LDLR pathway caused by pathogenic factors. The mTOR complex1 activation upregulates LDLR expression at the transcriptional and posttranscriptional levels, consequently resulting in lipid deposition. This paper mainly reviews the mechanisms for the dysregulation of LDLR pathway and its roles in lipid disorder-mediated organ injury under various pathogenic conditions. Understanding these mechanisms leading to the abnormality of LDLR expression contributes to find potential new drug targets in lipid disorder-mediated diseases.
Semen cryopreservation was possible in most adolescent cancer cases regardless of age or diagnosis. In all cases the quality of the semen was potentially useful for assisted conception procedures. An offer to freeze sperm in all patients aged >12 years should be made. Adequate support and counselling of both the boys and their parents is essential.
High-density lipoprotein (HDL) has been proposed as the principal carrier of hydroperoxides in plasma, based upon data gathered with an HPLC-chemiluminescence technique. To test this hypothesis we have measured total lipid hydroperoxides in native plasma using the ferrous oxidation in Xylenol Orange (FOX) assay and then fractionated plasma into very-low-density lipoprotein (LDL) and HDL fractions. Hydroperoxides were found to accumulate principally (more than 65%) in LDL, as judged by hydroperoxide content per amount of protein or cholesterol, or expressed as a proportion of total hydroperoxide in plasma. Plasma was also incubated at 37 degrees C in the presence and absence of 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), an azo-initiator of lipid peroxidation. The majority of hydroperoxides generated in plasma were recovered in the LDL fraction. Furthermore, when isolated lipoproteins were subject to oxidation initiated by AAPH, very-low-density lipoprotein and LDL showed the greatest propensity for hydroperoxide accumulation, whereas HDL seemed relatively resistant. Estimates for plasma and LDL peroxidation based upon techniques which measure total lipid hydroperoxides suggest that levels of hydroperoxides in plasma and LDL are far higher than that those estimates generated by ostensibly more selective techniques. Higher levels of hydroperoxides in LDL than those reported by HPLC-chemiluminescence also seem in greater accordance with other available data concerning LDL oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.