SummaryA major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2‐oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10–30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.
Background: Phalaenopsis orchids are one of the most common potted orchids sold worldwide. Most Phalaenopsis cultivars have long inflorescences that cause shipping problems and increase handling costs. Miniaturization of Phalaenopsis orchids not only reduces overall production costs but also can expand the appeal of the orchids to a different group of consumers who prefer to keep flowers on desks or tabletops. Although some miniature Phalaenopsis plants can be obtained via hybridization or mutation, they are unpredictable and limited in variety. We therefore used the transgenic approach of overexpressing gibberellin 2-oxidase 6 (OsGA2ox6), a rice GA deactivation gene, to investigate its functional effect in miniaturizing Phalaenopsis and to create a stable miniaturization platform to facilitate a supply for the potential demands of the miniature flower market. Results:A commercial moth orchid, Phalaenopsis Sogo Yukidian 'SPM313' , was transformed with the plasmid vector Ubi:OsGA2ox6 and successfully overexpressed the OsGA2ox6 gene in planta. The transgenic lines displayed darkergreen, shorter, and wider leaves, thicker roots and much shorter flower spikes (10 cm vs 33 cm) than the nontransgenic line with a normal flower size and blooming ability and are therefore an ideal miniaturized form of Phalaenopsis orchids. Conclusions:We demonstrated that the ectopic expression of OsGA2ox6 can miniaturize Phalaenopsis Sogo Yukidian 'SPM313' while preserving its blooming ability, providing an alternative, useful method for miniaturizing Phalaenopsis species. This miniaturization by a transgenic approach can be further expanded by using GA2ox genes from different plant species or different gene variants, thereby expanding the technical platform for miniaturizing Phalaenopsis species to meet the potential demands of the miniature Phalaenopsis flower market.
Background GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. Results Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. Conclusions This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Detecting the simultaneous presence of a microRNA (miRNA) and a mRNA in a specific tissue can provide support for the prediction that the miRNA regulates the mRNA. Although two such methods have been developed for mammalian tissues, they have a low signal-noise ratio and/or poor resolution at the single-cell level. To overcome these drawbacks, we develop a method that uses sequence-specific miRNA-locked nucleic acid (LNA) and mRNA-LNA probes. Moreover, it augments the detection signal by rolling circle amplification, achieving a high signal-noise ratio at the single-cell level. Dot signals are counted for determining the expression levels of mRNA and miRNA molecules in specific cells. We show a high sequence specificity of our miRNA-LNA probe, revealing that it can discriminate single-base mismatches. Numerical quantification by our method is tested in transgenic rice lines with different gene expression levels. We conduct several applications. First, the spatial expression profiling of osa-miR156 and OsSPL12 in rice leaves reveals their specific expression in mesophyll cells. Second, studying rice and its mutant lines with our method reveals opposite expression patterns of miRNA and its target mRNA in tissues. Third, the dynamic expression profiles of ZmGRF8 and zma-miR396 during maize leaf development provide evidence that zma-miR396 regulates the preferential spatial expression of ZmGRF8 in bundle sheath cells. Finally, our method can be scaled up to simultaneously detect multiple miRNAs and mRNAs in a tissue. Thus, it is a sensitive and versatile technique for studying miRNA regulation of plant tissue development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.