Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus.
p75NTR participated in tooth germ development stages and mediated differential mineralization of EMSCs. p75NTR played a critical role in regulating the potential of differential mineralization of EMSCs. Mage-D1 seemed to act as a bridge in the underlying mechanism of effects of p75NTR.
Considerable evidence has shown that the Wnt/β-catenin pathway is involved in osteogenic differentiation in various stem cells. However, the role of Wnt/β-catenin pathway in regulating the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs), which are considered to be the progenitors of dental mesenchymal stem cells, remains unknown. In this study, we demonstrated that nuclear β-catenin was upregulated during EMSC osteogenic differentiation. The Wnt signalling inhibitor IWR-1-endo inhibited EMSC osteogenic differentiation, while the Wnt signalling agonist SKL2001 promoted it. Moreover, nuclear β-catenin was further upregulated by the overexpression of low-affinity nerve growth factor receptor (LNGFR) during EMSC osteogenic differentiation. Further experiments demonstrated that LNGFR overexpression enhanced EMSC osteogenic differentiation, while LNGFR silencing decreased it. Additionally, IWR-1-endo attenuated LNGFR-enhanced EMSC osteogenic differentiation. Collectively, our data reveal that LNGFR targets the Wnt/β-catenin pathway and positively regulates EMSC osteogenic differentiation, suggesting that Wnt/β-catenin pathway may be involved in the development of teeth and that the targeting Wnt/β-catenin pathway may have great potential for applications in dental tissue engineering regeneration.
Objectives
The aim of this study was to investigate the role of p75 neurotrophin receptor (p75NTR) in regulating the mouse alveolar bone development and the mineralization potential of murine ectomesenchymal stem cells (EMSCs). Moreover, we tried to explore the underlying mechanisms associated with the PI3K/Akt/β‐catenin pathway.
Materials and methods
p75NTR knockout (p75NTR−/−) mice and wild‐type (WT) littermates were used. E12.5d p75NTR−/− and WT EMSCs were isolated in the same pregnant p75NTR‐/+ mice from embryonic maxillofacial processes separately. Mouse alveolar bone mass was evaluated using micro‐CT. Differential osteogenic differentiation pathways between p75NTR−/− and WT EMSCs were analysed by RNA‐sequencing. The PI3K inhibitor LY294002 and PI3K agonist 740Y‐P were used to regulate the PI3K/Akt pathway in EMSCs. p75NTR overexpression lentiviruses, p75NTR knock‐down lentiviruses and recombined mouse NGF were used to transfect cells.
Results
The alveolar bone mass was found reduced in the p75NTR knockout mouse comparing to the WT mouse. During mineralization induction, p75NTR−/− EMSCs displayed decreased osteogenic capacity and downregulated PI3K/Akt/β‐catenin signalling. The PI3K/Akt/β‐catenin pathway positively regulates the potential of differential mineralization in EMSCs. The promotive effect of p75NTR overexpression can be attenuated by LY294002, while the inhibitory effect of p75NTR knock‐down on Runx2 and Col1 expression can be reversed by 740Y‐P.
Conclusion
Deletion of p75NTR reduced alveolar bone mass in mice. P75NTR positively regulated the osteogenic differentiation of EMSCs via enhancing the PI3K/Akt/β‐catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.