Wrinkling is one of the most important factors influencing a forming precision of sheet metal, which brings difficulties to the forming process of sheet metal. In order to eliminate the wrinkling during the forming process, an accurate prediction is necessary. In this paper, the wrinkling elimination process was investigated based on the principle of the Yoshida Buckling Test (YBT) and viscous pressure forming. The experimental device was designed, and evaluation method of the wrinkling elimination rate was presented by the stainless steel SUS304. On this basis, the wrinkling elimination experiment was carried out, the influences of both the viscous medium molecular weight and the tensile state of wrinkle under the viscous pressure on the wrinkling elimination were obtained.
Two Alloy N/316H bimetallic plates have been fabricated by explosive welding and rolling technologies respectively. Metallographic observations indicate that the rolled bimetallic plate has a straight bond interface, in which some cavities and precipitates exist. While the explosive welded plate shows a wavy bond interfaces. The interface thermal expansion mismatch between the two alloys were evaluated in the two plates at high temperature. Results show that the thermal expansion coefficient of 316H is larger than that of Alloy N. The thermal expansion coefficient of the substrate plates depends on the thickness ratio between Alloy N and 316H, which reaches the maximum when the ratio is 1:4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.