The purpose of this research was to design and develop hydrogels by esterification of polyvinyl alcohol (PVA) with gelatin. The membranes were characterized by Fourier Transform Infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and differential scanning calorimetry. The viscosity of the esterified product (as solution) was compared with the mixture of PVA and gelatin of the same composition. The mechanical properties of the hydrogels were characterized by tensile tests. Swelling behavior and hemocompatibility of the membrane were also evaluated. The diffusion coefficient of salicylic acid (SA), when the receptor compartment contained Ringer's solution, through the membrane was determined. SA was used as a model drug. FTIR spectra of the membranes indicated complete esterification of the free carboxylic groups of gelatin. XRD studies indicated that the crystallinity of the membranes was mainly due to gelatin. The comparison of viscosity indicated an increase in segment density within the molecular coil. The membrane had sufficient strength and water-holding capacity. Hemocompatibility suggested that the hydrogel could be tried as wound dressing and as an implantable drug delivery system. The diffusion coefficient of SA through the membrane was found to be 1.32 × 10 −5 cm 2 /s. The experimental results indicated that the hydrogel could be tried for various biomedical applications.
Hydrogels are cross-linked polymeric networks, which have the ability to hold water within the spaces available among the polymeric chains. The hydrogels have been used extensively in various biomedical applications, e.g., drug delivery, cell carriers and/or entrapment, wound management and tissue engineering. Though far from extensive, this article has been devoted to study the common methods used for the characterization of the hydrogels and to review the range of applications of the same in health care.
Bioadhesion can be defined as the process by which a natural or a synthetic polymer can adhere to a biological substrate. When the biological substrate is a mucosal layer then the phenomena is known as mucoadhesion. The substrate possessing bioadhesive property can help in devising a delivery system capable of delivering a bioactive agent for a prolonged period of time at a specific delivery site. The current review provides a good insight on mucoadhesive polymers, the phenomenon of mucoadhesion and the factors which have the ability to affect the mucoadhesive properties of a polymer.
An organogel, a viscoelastic system, can be regarded as a semi-solid preparation which has an immobilized external apolar phase. The apolar phase is immobilized within spaces of the three-dimensional network structure formed due to the physical interactions amongst the self-assembling structures of compounds regarded as gelators. In general, organogels are thermodynamically stable in nature and have been explored as matrices for the delivery of bioactive agents. In the current paper, attempts have been made to understand the properties of organogels, various types of organogelators and some applications of the organogels in controlled delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.