In this paper, a multi-objective evolutionary algorithm based on decomposition (MOEA/D) is proposed to solve the unit commitment (UC) problem as a multi-objective optimization problem considering minimizing cost and emission as the multiple objectives. Since, UC problem is a mixed-integer optimization problem, a hybrid strategy is integrated within the framework of MOEA/D such that genetic algorithm (GA) evolves the binary variables while differential evolution (DE) evolves the continuous variables. Further, a novel non-uniform weight vector distribution strategy is proposed and an ensemble algorithm based on combination of MOEA/D with uniform and non-uniform weight vector distribution strategy is implemented to enhance the performance of the presented algorithm. Extensive case studies are presented on different test systems and the effectiveness of the hybrid strategy, the non-uniform weight vector distribution strategy and the ensemble algorithm is verified through stringent simulated results. Further, exhaustive benchmarking against the algorithm proposed in the literature is presented to demonstrate the superiority of the proposed algorithm.
This paper proposes a novel fuzzy rule-based penalty function approach for solving single-objective nonlinearly constrained optimization problems. Of all the existing state-of-the-art constraint handling techniques, the conventional method of penalty can be easily implemented because of its simplicity but suffers from the lack of robustness. To mitigate the problem of parameter dependency, several forms of adaptive penalties have been suggested in literature. Instead of identifying a complex mathematical function to compute the penalty for constraint violation, we propose a Mamdani type IF-THEN rule-based fuzzy inference system that incorporates all the required criteria of self-adaptive penalty without formulating an explicit mapping. Effectiveness of the proposed constrained optimization algorithm has been empirically validated on the basis of the standard optimality theorems from the literature on mathematical programming. Simulation results show that fuzzy penalty not only surpasses its existing counterpart i.e., self adaptive penalty, but also remain competitive against several other standard as well as currently developed complex constraint handling strategies.
The purpose of a multimodal biometric system is to construct a robust classifier of genuine and imposter candidates by extracting useful information from several biometric sources which fail to perform well in identification or verification as individual biometric systems. Amongst different levels of information fusion, very few approaches exist in literature exploring score level fusion. In this paper, we propose a novel adaptive weight and exponent based function mapping the matching scores from different biometric sources into a single amalgamated matching score to be used by a classifier for further decision making. Differential Evolution (DE) has been employed to adjust these tunable parameters with the objective being the minimization of the overlapping area of the frequency distributions of genuine and imposter scores in the fused score space, which are estimated by Gaussian kernel density method to achieve higher level of accuracy. Experimental results show that, the proposed method outperforms the conventional score-level fusion rules (sum, product, tanh, exponential) when tested on two databases of 4 modalities (fingerprint, iris, left ear and right ear) of 200 and 516 users and thus confirms the effectiveness of score level fusion. The preliminary results provide adequate motivation towards future research in the line of the application of meta-heuristics in score level fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.