Extraction and purification of nucleic acids from complex biological samples for PCR are critical steps because inhibitors must be removed that can affect reaction efficiency and the accuracy of results. This preanalytical processing generally involves capturing nucleic acids on microparticles that are then washed with a series of buffers to desorb and dilute out interfering substances. We have developed a novel purification method that replaces multiple wash steps with a single pass of paramagnetic particles (PMPs) though an immiscible hydrophobic liquid. Only two aqueous solutions are required: a lysis buffer , in which nucleic acids are captured on PMPs , and an elution buffer, in which they are released for amplification. The PMPs containing the nucleic acids are magnetically transported through a channel containing liquid wax that connects the lysis chamber to the elution chamber in a specially designed cartridge. Transporting PMPs through the immiscible phase yielded DNA and RNA as pure as that obtained after extensive wash steps required by comparable purification methods. Our immiscible-phase process has been applied to targets in whole blood , plasma , and urine and will enable the development of faster and simpler purification systems. (J Mol Diagn 2010, 12:620 -628;
Nonstructured regions in proteins that provide the link between two regular structured regions play a significant role in maintaining the scaffold of the protein. Not only do they act as connectors between two regular secondary structural elements of proteins but they also provide the necessary turn or reversal in the polypeptide chain. This incorporates flexibility in the structure. Thus an understanding of the structural aspects of the nonregular regions is necessary to have a better insight into these features. We can assume the nonregular region to be a contorted polypeptide segment tethered by regular secondary structured regions at both ends. To describe the undulating nature of the nonregular regions, we introduce a parameter called the "contortion index." This index describes how tortuously the region is organized. Our analysis shows that the contortion index is related to other physicochemical parameters and can be used to characterize the nonregular regions of proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.