The information on the variations of indium composition, aggregation size, and quantum-well width is crucially important for understanding the optical properties and, hence, fabricating efficient light-emitting devices. Our results showed that spinodal decomposition could occur in InGaN/GaN multiple quantum wells with indium content in the range of 15%-25% ͑grown with metal-organic chemical-vapor deposition͒. A lower nominal indium content led to a better confinement of indium-rich clusters within InGaN quantum wells. The InGaN/GaN interfaces became more diffusive, and indium-rich aggregates extended into GaN barriers with increasing indium content. It was also observed that indium-rich precipitates with diameter ranging from 5 to 12 nm preferred aggregating near V-shaped defects.
Multiple-component decays of photoluminescence (PL) in InGaN/GaN quantum wells have been widely reported. However, their physical interpretations have not been well discussed yet. Based on wavelength-dependent and temperature-varying time-resolved PL measurements, the mechanism of carrier transport among different levels of localized states (spatially distributed) in such an indium aggregated structure was proposed for interpreting the early-stage fast decay, delayed slow rise, and extended slow decay of PL intensity. Three samples of the same quantum well geometry but different nominal indium contents, and hence different degrees of indium aggregation and carrier localization, were compared. The process of carrier transport was enhanced with a certain amount of thermal energy for overcoming potential barriers between spatially distributed potential minimums. In samples of higher indium contents, more complicated carrier localization potential structures led to enhanced carrier transport activities. Free exciton behaviors of the three samples at high temperatures are consistent with previously reported transmission electron microscopy results.
Based on wavelength-dependent and temperature-varying time-resolved photoluminescence ͑PL͒ measurements, the mechanism of carrier transport among different levels of localized states ͑spatially distributed͒ in an InGaN/GaN quantum well structure was proposed for interpreting the early-stage fast decay, delayed slow rise, and extended slow decay of PL intensity. The process of carrier transport was enhanced with a certain amount of thermal energy for overcoming potential barriers between spatially distributed potential minimums. With carrier supply in the carrier transport process, the extended PL decay time at wavelengths corresponding to deeply localized states can be as large as 80 ns.
The glass molding process (GMP) is regarded as a very promising technique for mass producing high precision optical components such as spherical/ aspheric glass lenses and free-form optics. However, only a handful of materials can sustain the chemical reaction, mechanical stress and temperature involved in the glass molding process. Besides, almost all of these mold materials are classified as hard-to-machine materials. This makes the machining of these materials to sub-micrometer form accuracy and nanometer surface finish a rather tough and expensive task. As a result, making mold life longer has become extremely critical in the GMP industry. The interfacial chemical reaction between optical glass and mold is normally the main reason for pre-matured mold failure. This research aimed to investigate the interfacial chemical reaction between various optical glasses, different anti-stick coating designs and several mold materials. The results showed that glass composition, coating design (composition, microstructure, thickness), environment (vacuum, air or in protective gas), reaction temperature and time could all have profound effects on the interfacial chemical reaction. Based on the results, a design developed specially for certain glasses is more likely to be the viable way of optimizing the effect of the protective coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.