The information on the variations of indium composition, aggregation size, and quantum-well width is crucially important for understanding the optical properties and, hence, fabricating efficient light-emitting devices. Our results showed that spinodal decomposition could occur in InGaN/GaN multiple quantum wells with indium content in the range of 15%-25% ͑grown with metal-organic chemical-vapor deposition͒. A lower nominal indium content led to a better confinement of indium-rich clusters within InGaN quantum wells. The InGaN/GaN interfaces became more diffusive, and indium-rich aggregates extended into GaN barriers with increasing indium content. It was also observed that indium-rich precipitates with diameter ranging from 5 to 12 nm preferred aggregating near V-shaped defects.
The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture.
Semiconductor quantum dots (QDs) have been demonstrated viable for efficient light emission applications, in particular for the emission of single photons on demand. However, the preparation of QDs emitting photons with predefined and deterministic polarization vectors has proven arduous. Access to linearly polarized photons is essential for various applications. In this report, a novel concept to directly generate linearly-polarized photons is presented. This concept is based on InGaN QDs grown on top of elongated GaN hexagonal pyramids, by which the predefined elongation determines the polarization vectors of the emitted photons from the QDs. This growth scheme should allow fabrication of ultracompact arrays of photon emitters, with a controlled polarization direction for each individual emitter. Keywords: GaN; InGaN; photoluminescence; polarized emission; quantum dot INTRODUCTION Quantum dots (QDs) have validated their important role in current optoelectronic devices and they are also seen promising as light sources for quantum information applications. An improved efficiency of laser diodes and light-emitting diodes can be achieved by the incorporation of QDs ensembles in the optically active layers.1 In addition, the proposed quantum computer applications rely on photons with distinct energy and polarization vectors, which can be seen as the ultimate demand on photons emitted from individual QDs.2 A common requirement raised for several optoelectronic applications, e.g., liquid-crystal displays, three-dimensional visualization, (bio)-dermatology 3 and the optical quantum computers, 4 is the need of linearly polarized light for their operation. For existing applications, the generation of linearly polarized light is obtained by passing unpolarized light through a combination of polarization selective filters and waveguides, with an inevitable efficiency loss as the result. These losses can be drastically reduced by employment of sources, which directly generate photons with desired polarization directions.Conventional QDs grown via the Stranski-Krastanov (SK) growth mode are typically randomly distributed over planar substrates and possess different degrees of anisotropies. The anisotropy in strain field and/or geometrical shape of each individual QD determines the polarization performance of the QD emission. Accordingly, a cumbersome post-selection of QDs with desired polarization properties among the randomly distributed QDs is required for device integration.
Fabrication of single InGaN quantum dots (QDs) on top of GaN micropyramids is reported. The formation of single QDs is evidenced by showing single sub-millielectronvolt emission lines in microphotoluminescence (μPL) spectra. Tunable QD emission energy by varying the growth temperature of the InGaN layers is also demonstrated. From μPL, it is evident that the QDs are located in the apexes of the pyramids. The fact that the emission lines of the QDs are linear polarized in a preferred direction implies that the apexes induce unidirected anisotropic fields to the QDs. The single emission lines remain unchanged with increasing the excitation power and/or crystal temperature. An in-plane elongated QD forming a shallow potential with an equal number of trapped electrons and holes is proposed to explain the absence of other exciton complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.