Both heart rate variability (HRV) and pulse rate variability (PRV) are noninvasive means for the assessment of autonomic nervous control of the heart. However, it is not settled whether or not the PRV obtained from either hand can be the surrogate of HRV. The HRV measures obtained from electrocardiographic signals and the PRV measures obtained from the pulse waves recorded from the index fingers of both hands were compared in normal subjects by using linear regression analysis and Bland and Altman method. Highly significant correlations (P < 0.001, 0.89 < r < 1.0) were found between all HRV measures and the corresponding PRV measures of both hands. However, there were insufficient agreements in some measures between pairwise comparisons among HRV, right PRV and left PRV except heart rate and ultra-low frequency power (ULFP). The PRV of either hand is close to, but not the same as the HRV in healthy subjects. The HRV, right PRV and left PRV are not surrogates of one another in normal subjects except heart rate and ULFP. Since HRV is generally accepted as the standard method for the assessment of the autonomic nervous modulation of a subject, the PRV of either hand may not be suitable for the assessment of the cardiac autonomic nervous modulation of the subject.
The Poincaré plot of RR intervals (RRI) is obtained by plotting RRIn+1 against RRIn. The Pearson correlation coefficient (ρRRI), slope (SRRI), Y-intercept (YRRI), standard deviation of instantaneous beat-to-beat RRI variability (SD1RR), and standard deviation of continuous long-term RRI variability (SD2RR) can be defined to characterize the plot. Similarly, the Poincaré plot of autocorrelation function (ACF) of RRI can be obtained by plotting ACFk+1 against ACFk. The corresponding Pearson correlation coefficient (ρACF), slope (SACF), Y-intercept (YACF), SD1ACF, and SD2ACF can be defined similarly to characterize the plot. By comparing the indices of Poincaré plots of RRI and ACF between patients with acute myocardial infarction (AMI) and patients with patent coronary artery (PCA), we found that the ρACF and SACF were significantly larger, whereas the RMSSDACF/SDACF and SD1ACF/SD2ACF were significantly smaller in AMI patients. The ρACF and SACF correlated significantly and negatively with normalized high-frequency power (nHFP), and significantly and positively with normalized very low-frequency power (nVLFP) of heart rate variability in both groups of patients. On the contrary, the RMSSDACF/SDACF and SD1ACF/SD2ACF correlated significantly and positively with nHFP, and significantly and negatively with nVLFP and low-/high-frequency power ratio (LHR) in both groups of patients. We concluded that the ρACF, SACF, RMSSDACF/SDACF, and SD1ACF/SD2ACF, among many other indices of ACF Poincaré plot, can be used to differentiate between patients with AMI and patients with PCA, and that the increase in ρACF and SACF and the decrease in RMSSDACF/SDACF and SD1ACF/SD2ACF suggest an increased sympathetic and decreased vagal modulations in both groups of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.