A lot of real-life mobile sensing applications are becoming available. These applications use mobile sensors embedded in smart phones to recognize human activities in order to get a better understanding of human behavior. In this paper, we propose a LSTM-based feature extraction approach to recognize human activities using tri-axial accelerometers data. The experimental results on the (WISDM) Lab public datasets indicate that our LSTM-based approach is practical and achieves 92.1% accuracy.
Robust and automated surgical workflow detection in real time is a core component of the future intelligent operating room. Based on this technology, it can help medical staff to automate and intelligently complete many routine activities during surgery. Recognition of surgical workflow based on traditional pattern recognition methods requires a large number of labeled surgical video data. However, the labeled surgical video data requires expert knowledge and it is difficult and time consuming to collect a sufficient number of labeled surgical video data in the medical field. Therefore, this paper proposes a semi-supervised spatio-temporal convolutional network for the recognition of surgical workflow based on convolutional neural networks and temporal-recursive networks. Firstly, we build a spatial convolutional extraction feature network based on unsupervised generative adversarial learning. Then, we build a bridge between lowlevel surgical video features and high-level surgical workflow semantics based on an unsupervised temporal-ordered network learning approach. Finally, we use the semi-supervised learning method to integrate the spatial model and the temporal model to fine-tune the network, and realize the intelligent recognition of the surgical workflow at a low cost to efficiently determine the progress of the surgical workflow. We performed some experiments for validating the mode based on m2cai16-workflow dataset. It shows that the proposed model can effectively extract the surgical feature and determine the surgical workflow. The Jaccard score of the model reaches 71.3%, and the accuracy of the model reaches 85.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.