Abstract. Precipitation nowcasting play a vital role in preventing meteorological disasters and doppler radar data acts as an important input for nowcasting models. The traditional extrapolation method is difficult to model highly nonlinear echo movements. The key challenge of the nowcasting mission lies in achieving high-precision radar echo extrapolation. In recent years, machine learning has made a great progress in the extrapolation of weather radar echoes. However, most of models neglect the multi-modal characteristics of radar echo data, resulting in blurred and unrealistic prediction images. This paper aims to solve this problem by utilizing the feature of the GAN that can enhance the multi-modal distribution modelling, and design the radar echo extrapolation model of GAN-argcPredNet. The model composed of argcPredNet generator and a convolutional neural network discriminator. In generator, a gate control data memory and output are designed in the rgcLSTM prediction unit of the generator, thereby reducing the loss of spatiotemporal information. In discriminator, model uses a dual-channel input method, which enables it to strictly score according to the true echo distribution, and has a more powerful discrimination ability. Through experiments on the radar data set of Shenzhen, China, the results show that the radar echo hit rate (POD) and critical success index (CSI) increased by 5.5 % and %10.4 % compared with rgcPredNet, the false alarm rate (FAR) is reduced by 15 %~20 %. From the comparison of the result graph and the evaluation index, we also found a problem. The recursive prediction method will produce the phenomenon that the prediction result will gradually deviate from the true value over time. In addition, the accuracy of high-intensity echo extrapolation is relatively low. This is a question worthy of further investigation. In the future, we will continue to conduct research from these two directions.