The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging
This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.
Objectives To compare an automated cephalometric analysis based on the latest deep learning method of automatically identifying cephalometric landmarks (AI) with previously published AI according to the test style of the worldwide AI challenges at the International Symposium on Biomedical Imaging conferences held by the Institute of Electrical and Electronics Engineers (IEEE ISBI). Materials and Methods This latest AI was developed by using a total of 1983 cephalograms as training data. In the training procedures, a modification of a contemporary deep learning method, YOLO version 3 algorithm, was applied. Test data consisted of 200 cephalograms. To follow the same test style of the AI challenges at IEEE ISBI, a human examiner manually identified the IEEE ISBI-designated 19 cephalometric landmarks, both in training and test data sets, which were used as references for comparison. Then, the latest AI and another human examiner independently detected the same landmarks in the test data set. The test results were compared by the measures that appeared at IEEE ISBI: the success detection rate (SDR) and the success classification rates (SCR). Results SDR of the latest AI in the 2-mm range was 75.5% and SCR was 81.5%. These were greater than any other previous AIs. Compared to the human examiners, AI showed a superior success classification rate in some cephalometric analysis measures. Conclusions This latest AI seems to have superior performance compared to previous AI methods. It also seems to demonstrate cephalometric analysis comparable to human examiners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.