Cerebrospinal fluid (CSF) dynamics were correlated to the changes in ventricular size during the first 3 months posttrauma in patients with severe head injury (Glasgow Coma Scale score < or = 8, 75 patients) to distinguish between atrophy and hydrocephalus as the two possible causes of posttraumatic ventriculomegaly. Using the bolus injection technique, the baseline intracranial pressure (ICP), pressure volume index, and resistance for CSF absorption (R0) provided a three-dimensional profile of CSF dynamics that was correlated with ventricular size and Glasgow Outcome Scale (GOS) score at 3, 6, and 12 months posttrauma. Patients were separated into five different groups based on changes in ventricular size, presence of atrophy, and CSF dynamics. Group 1 (normal group, 41.3%) demonstrated normal ventricular size and normal ICP. Group 2 (benign intracranial hypertension group, 14.7%) showed normal ventricular size and elevated ICP. Group 3 (atrophy group, 24%) displayed ventriculomegaly, normal ICP, and normal R0. Group 4 (normal-pressure hydrocephalus group, 9.3%) had ventriculomegaly, normal ICP, and high R0. Group 5 (high-pressure hydrocephalus group, 10.7%) showed ventriculomegaly and elevated ICP with or without high R0. The GOS score in the nonhydrocephalic groups (Groups 1, 2, and 3) was better than in the hydrocephalic groups (Groups 4 and 5). It is concluded from these results that 44% of head injury survivors may develop posttraumatic ventriculomegaly. Posttraumatic hydrocephalus, as identified by abnormal CSF dynamics, was diagnosed in 20% of survivors and their outcome was significantly worse. This study demonstrates the importance of using CSF dynamics as an aid in diagnosis of posttraumatic hydrocephalus and identifying those patients who may benefit from shunt placement.
Increased brain tissue stiffness following severe traumatic brain injury is an important factor in the development of raised intracranial pressure (ICP). However, the mechanisms involved in brain tissue stiffness are not well understood, particularly the effect of changes in systemic blood pressure. Thus, controversy exists as to the optimum management of blood pressure in severe head injury, and diverging treatment strategies have been proposed. In the present study, the effect of induced alterations in blood pressure on ICP and brain stiffness as indicated by the pressure-volume index (PVI) was studied during 58 tests of autoregulation of cerebral blood flow in 47 comatose head-injured patients. In patients with intact autoregulation mechanisms, lowering the blood pressure caused a steep increase in ICP (from 20 +/- 3 to 30 +/- 2 mm Hg, mean +/- standard error of the mean), while raising blood pressure did not change the ICP. When autoregulation was defective, ICP varied directly with blood pressure. Accordingly, with intact autoregulation, a weak positive correlation between PVI and cerebral perfusion pressure was found; however, with defective autoregulation, the PVI was inversely related to cerebral perfusion pressure. The various blood pressure manipulations did not significantly alter the cerebral metabolic rate of oxygen, irrespective of the status of autoregulation. It is concluded that the changes in ICP can be explained by changes in cerebral blood volume due to cerebral vasoconstriction or dilatation, while the changes in PVI can be largely attributed to alterations in transmural pressure, which may or may not be attenuated by cerebral arteriolar vasoconstriction, depending on the autoregulatory status. The data indicate that a decline in blood pressure should be avoided in head-injured patients, even when baseline blood pressure is high. On the other hand, induced hypertension did not consistently reduce ICP in patients with intact autoregulation and should only be attempted after thorough assessment of the cerebrovascular status and under careful monitoring of its effects.
Appropriate management of intracranial pressure (ICP) in severely head injured patients depends in part on the cerebral vessel reactivity to PCO2; loss of CO2 reactivity has been associated with poor outcome. This study describes a new method for evaluating vascular reactivity in head-injured patients by determining the sensitivity of ICP change to alterations in PCO2. This method was combined with measurements of the pressure volume index (PVI), which allowed calculation of blood volume change necessary to alter ICP. The objective of this study was to investigate the ICP response and the blood volume change corresponding to alterations in PCO2 and to examine the correlation of responsivity and outcome as measured on the Glasgow Outcome Scale. The PVI and ICP at different end-tidal PCO2 levels produced by mild hypo- and hyperventilation were obtained in 49 patients with Glasgow Coma Scale scores of less than 8 and over a wide range of PCO2 (25 to 40 mm Hg) in eight patients. Given the assumption that the PVI remained constant during alteration of PaCO2, the estimated blood volume change per torr change of PCO2 was calculated by the following equation: BVR = PVI x delta log(ICP)/delta PCO2, where BVR = blood volume reactivity. The data in this study showed that PVI remained stable with changes in PCO2, thus validating the assumption used in the blood volume estimates. Moreover, the response of ICP to PCO2 alterations followed an exponential curve that could be described in terms of the responsivity indices to capnic stimuli. It was found that responsivity to hypocapnia was reduced by 50% compared to responsivity to hypercapnia measured within 24 hours of injury (p < 0.01). The sensitivity of ICP to estimated blood volume changes in patients with a PVI of less than 15 ml was extremely high with only 4 ml of blood required to raise ICP by 10 mm Hg. The authors conclude from these data that, following traumatic injury, the resistance vessels are in a state of persistent vasoconstriction, possibly due to vasospasm or compression. Furthermore, BVR correlates with outcome on the Glasgow Coma Scale, indicating that assessment of cerebrovascular response within the first 24 hours of injury may be of prognostic value.
A case of ruptured intracranial mycotic aneurysm associated with acute subdural hematoma is presented. A 26-year-old woman with cardiac valve disease who had been intermittently febrile for 2 weeks suddenly became comatose. There had been no head injury. At the time of admission, a cardiac murmur was audible and petechiae were noted on the conjunctivae and fingers, suggesting a diagnosis of bacterial endocarditis. The blood culture yielded Streptococcus faecalis. The computed tomo graphic scan revealed an intracerebral hematoma and acute subdural hematoma. Angiography dis closed an aneurysm at the distal middle cerebral artery. Such a combination of intracranial mycotic aneurysm and acute subdural hematoma is very rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.