Cerebrospinal fluid (CSF) dynamics were correlated to the changes in ventricular size during the first 3 months posttrauma in patients with severe head injury (Glasgow Coma Scale score < or = 8, 75 patients) to distinguish between atrophy and hydrocephalus as the two possible causes of posttraumatic ventriculomegaly. Using the bolus injection technique, the baseline intracranial pressure (ICP), pressure volume index, and resistance for CSF absorption (R0) provided a three-dimensional profile of CSF dynamics that was correlated with ventricular size and Glasgow Outcome Scale (GOS) score at 3, 6, and 12 months posttrauma. Patients were separated into five different groups based on changes in ventricular size, presence of atrophy, and CSF dynamics. Group 1 (normal group, 41.3%) demonstrated normal ventricular size and normal ICP. Group 2 (benign intracranial hypertension group, 14.7%) showed normal ventricular size and elevated ICP. Group 3 (atrophy group, 24%) displayed ventriculomegaly, normal ICP, and normal R0. Group 4 (normal-pressure hydrocephalus group, 9.3%) had ventriculomegaly, normal ICP, and high R0. Group 5 (high-pressure hydrocephalus group, 10.7%) showed ventriculomegaly and elevated ICP with or without high R0. The GOS score in the nonhydrocephalic groups (Groups 1, 2, and 3) was better than in the hydrocephalic groups (Groups 4 and 5). It is concluded from these results that 44% of head injury survivors may develop posttraumatic ventriculomegaly. Posttraumatic hydrocephalus, as identified by abnormal CSF dynamics, was diagnosed in 20% of survivors and their outcome was significantly worse. This study demonstrates the importance of using CSF dynamics as an aid in diagnosis of posttraumatic hydrocephalus and identifying those patients who may benefit from shunt placement.
The results of this study showed that brain edema is the major fluid component contributing to traumatic brain swelling. Moreover, CBV is reduced in proportion to CBF reduction following severe brain injury.
Appropriate management of intracranial pressure (ICP) in severely head injured patients depends in part on the cerebral vessel reactivity to PCO2; loss of CO2 reactivity has been associated with poor outcome. This study describes a new method for evaluating vascular reactivity in head-injured patients by determining the sensitivity of ICP change to alterations in PCO2. This method was combined with measurements of the pressure volume index (PVI), which allowed calculation of blood volume change necessary to alter ICP. The objective of this study was to investigate the ICP response and the blood volume change corresponding to alterations in PCO2 and to examine the correlation of responsivity and outcome as measured on the Glasgow Outcome Scale. The PVI and ICP at different end-tidal PCO2 levels produced by mild hypo- and hyperventilation were obtained in 49 patients with Glasgow Coma Scale scores of less than 8 and over a wide range of PCO2 (25 to 40 mm Hg) in eight patients. Given the assumption that the PVI remained constant during alteration of PaCO2, the estimated blood volume change per torr change of PCO2 was calculated by the following equation: BVR = PVI x delta log(ICP)/delta PCO2, where BVR = blood volume reactivity. The data in this study showed that PVI remained stable with changes in PCO2, thus validating the assumption used in the blood volume estimates. Moreover, the response of ICP to PCO2 alterations followed an exponential curve that could be described in terms of the responsivity indices to capnic stimuli. It was found that responsivity to hypocapnia was reduced by 50% compared to responsivity to hypercapnia measured within 24 hours of injury (p < 0.01). The sensitivity of ICP to estimated blood volume changes in patients with a PVI of less than 15 ml was extremely high with only 4 ml of blood required to raise ICP by 10 mm Hg. The authors conclude from these data that, following traumatic injury, the resistance vessels are in a state of persistent vasoconstriction, possibly due to vasospasm or compression. Furthermore, BVR correlates with outcome on the Glasgow Coma Scale, indicating that assessment of cerebrovascular response within the first 24 hours of injury may be of prognostic value.
The volatile components of the concrete from flowers of honeysuckle Lonicera juponicu Thunb. were analysed by G C and GC-MS. One hundred and fifty compounds, made up of 36 hydrocarbons, 28 alcohols, 21 aldehydes, 12 ketones, 38 esters and 15 miscellaneous, were identified and the important components that characterize the volatiles of honeysuckle flowers were recognized to be linalol, (2)-jasmone, (Z)-jasmin lactone, methyl jasmonate, and methyl epi-jasmonate. In addition, changes of the volatile components emitted from the living flowers throughout the whole day were investigated by dynamic headspace analysis using G C and GC-MS, and the strongest odour was found to be emitted in the middle of the night.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.